Мысли по философии математики. Математического 50442 В конец треда | Веб
Считаю пикрелейтедов двумя величайшими фигурами в истории математики.

1) Сриниваса Рамануджан показал, что традиционные методы доказательств не являются объективными и неоспоримыми. Будучи самоучкой, он имел собственный стиль математического мышления и получил уникальные результаты в теории чисел. Самый глубокий - сумма натурального ряда равна -1/12, что с точки зрения традиционной математики звучит абсурдно, следовательно, доказывает, что математика есть лишь выдуманная ОДНИМ человеком абстракция, которая ДРУГИМ человеком может быть воспринята иначе, и в той же степени может претендовать на истинность. Общепринятая математика, таким образом, неполная.

2) А Курт Гёдель показал, что полной математики в принципе не может существовать. Вернее, что "в любой формальной системе существует утверждение, которое нельзя ни доказать, ни опровергнуть". Отсюда фразы о том, что математика - язык бога, что через неё можно познать мир - неверны. Гёдель фактически доказал, что мир не познаваем в полной мере с помощью формальных систем с конечным набором аксиом.

Прошу прощения за некоторое дилетантство, я не профессионал, математического образования не имею и занимаюсь математикой как хобби. Хотел бы услышать мысли грамотных людей по этому поводу.
2 50443
Название не полностью отобразилось: "Математического содержания здесь нет, проффесиональным математикам скорее всего будет скучно. Поэтому заранее советую им пропустить тред".
3 50450
>>50442 (OP)
Я, к несчастью, тоже любитель, но рискну прокомментировать прочитанное. Самым величайшим математиком в истории был Архимед, потому что именно его профиль изображён на одной из сторон филдсовской медали.
4 50452
>>50442 (OP)

>что с точки зрения традиционной математики звучит абсурдно


Аналитическое продолжение дзета-функции не звучит абсурдно.
Рамануджан мыслил как современник Эйлера, а жил в 20 веке.

>доказал, что мир не познаваем в полной мере с помощью формальных систем с конечным набором аксиом


Не имеет отношения к содержательной части математики: основной прогресс пришелся на промежуток между концом 1950-х началом 1970-х, дискуссии же по основаниям заглохли к середине 1930-х.
Впечатление, что твои знания ограничиваются прочтением книги "Дядя Петрос и проблема Гольдбаха".
5 50453
>>50450
Тогда уж Абель. И премия престижнее и математик значительнее.
6 50461
>>50442 (OP)
Платина
7 50467
>>50453
Что значит значительнее? Абель уже жил во времена Гаусса, Коши. А Архимеду в его времена равных, судя по всему, не было.
8 50475
>>50467
Чего не Пифагор сразу. Полумифические люди, про научную деятельность которых достоверно ничего не известно.
Работы Абеля, с другой стороны, еще при жизни получили высокую оценку от того же Гаусса.
9 50479
>>50442 (OP)
Я бы сказал Лагранж, но если подумать, то все хороши.
10 50480
>>50442 (OP)
Хорош! Жду продолжение, особенно выступления "Сознание и квантовая суперпозиция", "Эфир и теория относительности: столетний еврейский заговор", и "Тайны чисел, до сих пор не раскрытые математиками: 0.(9)".
11 50488
>>50442 (OP)
Эйлер был самым продуктивным.
12 50493
>>50488
Эрдеш вроде был продуктивнее.
>>50475
Ну потому что Пифагору могли присвоить результаты его учеников, а "полумифический" Архимед реально довёл до пределов стиля древнегреческую математику, шутка ли в одиночку изобрести аналог дифференциального и интегрального счисления в эпоху геометрических построений. В этом плане сильно выделяется также Диофант, но Архимед разностороннее.
13 50515
>>50442 (OP)
Гротендик и Дедекинд конечно!
14 50520
>>50479
члены?
15 50524
>>50493
Эрдеш шёл по проторенным дорожкам.
16 50525
>>50524
Известно каким дорожкам https://amphetamines.com/paul-erdos/
17 50542
>>50525
И по этим тоже. ;)
18 50561
>>50442 (OP)
Очевидный Галуа очевиден. Live fast, die young. Герой поколения.
19 50564
>>50525

>You shouldn’t have mentioned the stuff about Benzedrine. It’s not that you got it wrong. It’s just that I don’t want kids who are thinking about going into mathematics to think that they have to take drugs to succeed.


Такое милое лицемерие. Я вот сам на спидах сижу, но лучше об этом никому не рассказывайте - а то кабы чего не вышло.
20 50574
>>50564
К слову о том, как написать 1525 статей за жизнь.
21 50650
>>50564
На отходняках сильно способности падают? Без них на сколько оценишь результативность (приблизительно)?
image.png271 Кб, 500x485
22 50654
>>50650
Если не переставать марафонить, то и отходняков не будет.
23 50673
>>50442 (OP)
"Отсюда фразы о том, что математика - язык бога, что через неё можно познать мир - неверны"
Из теоремы Гёделя (в более общей современной формулировке) вытекает лишь то, что не существует тьюринговый алгоритм, который выдаёт все истинные и только истинные высказывания. Но кто доказал, что в нашем мире невозможны сверхтьюринговые вычисления?
24 50675
>>50564
Спиды высвобождают запасённую энергию из клеток. Если ничего не запасенно то и высвобождать нечего. Т.е. я так понимаю залог успеха в математике это занятия спортом что бы повысить скорость метаболизма, затем много есть, заниматься спортом(чтобы поддерживать характеристики метаболизма) и употреблять спиды.
25 50677
Кто нибудь картофан со сидами смешивал?
26 50678
>>50650
Такая то пушка что кто то подумал что это я употреблял, хотя это была очевидная отсылка к цитате. Сам то я никакого допинга серьезнее чем шоколадка на олимпиаде даже из далека не видел никогда.
Аноним 27 50679
А чё в оп-посте фотка Кунала Найара?
28 50688
>>50678
Кто же тебя знает, родной? Сегодня ты пишешь с юмором, а завтра раздосадованно набираешь строки. Текст эмоций не передаёт.

>Если не переставать марафонить, то и отходняков не будет.


Не. Интеллектуальный ресурс ограничен. Легко можно стать слабоумным при чрезмерной нагрузке.
29 50690
>>50688

>Не.


Эрдешу норм было.
30 50691
>>50690
Не думаю, что на Эрдеша стоит равняться. Мазги разные у всех.
31 50920
Мои утверждения распространяются и на мои высказывания, включая это.
padazhzhi202594521orig.png67 Кб, 317x372
32 50921
33 50963
>>50691
Типичная промытая зожка, на Эрдеша ровняться не стоит,

>Мазги разные у всех.


поэтому нужно всем дружно молиться, поститься, и слушать радио Радонеж.
34 50965
>>50963
Ты ёбнутый какой-то, что ли? Или Эрдешем себя возомнил? Ещё и зож приплесть успел, шизофреник.
35 50968
>>50965
Ну и в чем же я конкретно не прав, ничего кроме ко-ко-кукарек-кукареку не высрал а уже в мамкины психотерапевты заделался.
36 50969
>>50968

>ничего кроме ко-ко-кукарек-кукареку не высрал


Напомнило тебя, только ещё плюсом

>ряяя промытка



Побольше вкачивай в себя всяких НаРкоТиКоВ))), обязательно станешь великим математиком Романом. Прыгающим, правда, а не Михайловым. Хотя, ты и так уже хорош.
37 50970
>>50963

>Типичная промытая зожка, на Эрдеша ровняться не стоит,


О, вот же типичный анимешник. Ты небось ещё и в силу усердия веришь? Так продемонстрируй ссылку на свои научные статьи.
38 50976
>>50969>>50970
Тыпорылые ЗОЖ чмони перешли в атаку как это мило, ссу на убогоньких.

> Так продемонстрируй ссылку на свои научные статьи.


А может лучше ты соснешь моего хуйца?
39 50979
>>50976
Давай лучше я тебе сосну. Я люблю сосать хуи.
40 50981
Если бы можно было закидываться допингом под контролем врача, как это делают спортсмены, то может и был бы результат. А бессистемно долбить по-васянски - только длительность карьеры себе сокращаешь, вряд ли это окупится каким-то бустом, даже если он есть.
41 50983
>>50981
Но спортсмены выходят из строя. В случае математики самый пик карьеры с допингами припал бы на вычисления интегралов.
42 50984
>>50979
Фу пидор куда подъехать?
>>50981
Ну это просто утверждение ни на чем не основанное. Точнее основанное на ЗОЖной пропаганде. Я вот возьму и скажу что - любой Васян из падика под марочкой будет ебошить теоремы лучше этих ваших Перельманов. И если бы мы жили в дивном новом мире то такая же промытка уже бы утверждала что - да, мол, только так и может быть, а как же еще?
43 50985
>>50976 - кальчёныш треда, пососав хуй у своего отчима, загорелся и горит
44 50995
>>50983
Чёт не думаю, что они именно из-за допинга выходят из строя.

>>50984
Да, медицинских исследований у меня нет. Но их и у тебя нет, так что мы оба тут бросаемся догадочками и машем руками.
Про любого васяна vs Перельмана ты утверждать не можешь, потому что не любой васян успешно это делает. Про среднего васяна под марочками vs среднего васяна без марочек - пожалуй можешь, это будет такой же уровень обоснования, как и у меня.
45 51000
>>50976

>А может лучше ты соснешь моего хуйца?


Нет. Так где статьи твои, быдло? Ты топишь за наркотики, но не имеешь результатов на их основе. Может ты первокурсник?
46 51003
>>51000
Это малолетний ебанат, у которого в голове мейнстримная повестка, что наркотики помогают в творчестве.
47 51010
>>51003
Возможно.

>мейнстримная


Пожалуйста, откажитесь от этого недо слова.
48 51056
>>51003
Поддерживаю.
49 51058
>>51003
>>51056
Пиздос вы ебанаты совсем без мозгов

>мейнстримная


включаешь телек а там кисель рассказывает как упороться и трип словить, ну да охуеть вообще.
50 51059
>>51058 - первокур сгорел
51 51061
>>51059
Не проецируй, маня а то отчислят по собственному желанию
52 51064
>>51058

>телек


>кисель


Ясно, иди от сюда на хуй, ебанат пятнадцатилетний.
53 51074
>>51064

>ебанат пятнадцатилетний


Как же были произведены эти охуительные калькуляции?
15507926388070.jpg46 Кб, 544x600
54 51150
>>50442 (OP)
Позволь объяснить почему ты хуй, а Рамануджан и Гёдель не самые великие математики. Обоснованные претензии к формализму как основаниям математики были задолго до работ Гёделя. Брауэр тот же. Рамануджан хоть и понимал математику не так как это делают другие, не сделал из своего подхода внятной программы / направления. Т.е ценность для математики с него сомнительна.
55 51174
>>51150

>Гёдель не самые великие математики


У меня нет желания начинать холивар на тему какие разделы математики важны/неважны. Но вклад Гёделя в основания математики (как область собственно математических исследований) и математическую логику очень велик и фундаментален. И с моей точки зрения явно более существенен чем у какого-либо другого математика работавшего в этой области. Это вовсе не ограничивается теоремами о неполноте. Практически все его работы либо являлись концептуальным прорывом в существующем подразделе, либо создали новый.
56 51317
>>51174

>Но вклад Гёделя в основания математики и математическую логику очень велик и фундаментален


Я согласен с этим утверждением. Вот ещё утверждения, с которыми я согласен:
Вклад Дейкстры в компьютер саенс велик и фундаментален.
Вклад Гуссерля в философию велик и фундаментален (Гёдель его тоже ценил).
Вклад Дирака в физику велик и фундаментален.
Речь, однако, шла о математике.
57 51322
>>51317
Почему ты считаешь, что основания не математика? Там есть теоремы и тд, очень похоже на математику.
15533670731460.png447 Кб, 640x640
58 51346
>>51322

> Почему ты считаешь, что основания не математика?


Потому что основания это не гамалогии и не тапалогии, очевидно же. Фейерабенд завещал, что наука это то, что считают наукой те, кто считает что занимается наукой. Вербицкий основаниями не занимается, при этом считает себя математиком. Значит, основания не математика. Как-то так.
59 51347
>>51322
Потому что в основаниях не используется математика, и основания не используются в математике.
Математика определяется как всё, что необходимо для формулировки и доказательства теоремы Атьи-Зингера, великой теоремы Ферма, гипотез Вейля, теоремы об изоморфизме норменного вычета (гипотеза Милнора) и т.д. Математика это то, чем занимались Маклейн, Серр, Гротендик, Кан, Милнор, Квиллен, и др. То, чем сейчас занимаются Хитчин, Концевич, Шольце, Бхатт; любой математик знает, что такое математика.

>Там есть теоремы и тд,


Теоремы даже у Спинозы в "Этике" есть.

>51346


>наука это то, что считают наукой те, кто считает что занимается наукой


Это ещё у Куна было, но в остальном согласен. Что признается самим научным сообществом как наука, то и есть наука.
60 51350
>>51346
Гёдель тоже себя математиком считал.
>>51347

>основания не используются в математике.


Совсем? Неужели нигде не полезно доказать недоказуемость чего-то и тд?
61 51351
>>51350
Из последних примеров можно вспомнить разве что Коэна, которому дали премию полей за доказательство независимости гипотезы континуума (существование промежуточного кардинала между алеф нуль и алеф один) от zfc. Этим вопросом, если не путаю, Гёдель тоже интересовался. Но дело в том, что данная гипотеза оказалась по не совсем понятным причинам включена в список проблем Гильберта, да ещё и первым номером. Другой аспект, что доказательство было произведено применением новой техники форсинга, которая вроде как не вполне бесполезна и даже применяется где-то в теории топосов. Если бы не эти два аспекта (включение в престижный список проблем и использование нового метода) вполне возможно что премию бы не дали.
62 51352
>>51350

>Неужели нигде не полезно доказать недоказуемость чего-то


Единичные случаи.
63 51354
>>51350

> Гёдель тоже себя математиком считал.


И что? Тебе вон выше клован с мейлру сказал, что Гёдель не математик и математикой не занимался. Ты что, не веришь клованам с мейлру?
15532835322610.jpg93 Кб, 512x512
64 51355
>>51347
Т.е:
- математик это тот, кто занимается математикой.
- математика это то, чем занимается математик.
Ничего не упустил? Такой матерой хуйни даже у Рыбникова нет и у авторов "православной арифметики".
65 51358
>>51351
>>51352
Ну вот, а то совсем вы уж принижаете матлогику и основания. Потом проверка теорем компом, вроде прикладная вещь, а вроде даже сейчас без этого уже тяжко.
66 51360
>>51358

> проверка теорем компом


Этим вообще кто-то пользуется не из специалистов по основаниям? Или это очередная вещь в себе?
67 51365
>>51360
А куда деваться? Руками проверять теоремы по 3к страниц по теме, где 3.5 специалиста существуют, у которых своих дел полно? Без движения в этом направлении математика вообще заглохнуть может, вон работы Мочидзуки уже сколько проверяют? Другое дело, что охуеешь формализовывать, но Воеводский мутил что-то по этому поводу, ХоТТ, если доведут до конца будет збс.
68 51366
>>51360

> Или это очередная вещь в себе?


Вообще такие вот нападки очень напоминают дидов с их "нахуй вашу алгебру, котягории, а вот пользу они принести могут, м?". Стареете, матаны?
69 51367
>>51358
>>51360

> проверка теорем компом,


Просто проверка это 60е годы и automath де Брауна. Пруверы это гораздо более мощная вещь. И гамалогии с тапалогиями туда ещё Воеводский завез. А сейчас есть уже cubicaltt, где аксиома унивалентности это уже не аксиома а доказуемая теорема. Другой вопрос, что во все это могут полтора человека помимо Мортберга, ещё и Воеводский помер.
70 51368
>>51355
Конструктивист до сих пор не выяснил, что такое "контекстуальное определение". Я не только написал очевидную вещь, но еще и привел примеры. Маклейн про это говорил сто раз, что серьезную математику можно выучить только на конкретных примерах. Браузера ты уже прочитал, теперь пора взяться за Маклейна. Начни с form and function.
>>51360
Да вроде нет. Ну какие-то единичные примеры есть, например Хана-Банаха проверили на прувере mizar system, или там кукарекун сверху может тебе рассказать про "Основы Анализа" Ландау, проверенные автоматом Дебрауна.
В основном это, очевидно, бессмысленная деятельность, проверка той или иной теоремы на очередном говнопрувере нужна в основном для рекламы этого прувера. Математикам от этого пользы никакой.
71 51369
>>51367
О, я угадал про Дебрауна, даже пост не успел дописать. Что насчет ХОТТ, никаких гамалогий нет, не было, не может быть и не будет. Разве что на уровне названий, примерно как эндофункторы в Хаскеле у сойбоев-программистов.
72 51370
>>51365

>работы Мочидзуки уже сколько проверяют? Другое дело, что охуеешь формализовывать


1) работы Мотидзуки уже проверил Шульце
2) перевести введенный в IIUT формализм на язык унивалетных гомотопических сойбоев займет где-то 10^500 лет, по консервативным оценкам, т.е. совершенно not feasible.
Конструктивистам доступны только объедки вроде очень ограниченного числа теорем, доказанных математиками ещё до 1920-го года.
73 51371
>>51370

>уже проверил


>В августе 2012 года опубликовал на своем сайте четыре статьи, которые развивают арифметическую теорию Тейхмюллера (арифметическую теорию деформации)


Не прошло и 7 лет.
74 51372
>>51367

>Другой вопрос, что во все это могут полтора человека помимо Мортберга, ещё и Воеводский помер.


>>51370

> т.е. совершенно not feasible.


Ну так это печально, если проверка каждой теоремы с переднего края математики будет занимать 7 лет( а ведь Уайлз 10 лет потратил на док-во теоремы Ферма), то математика превратится в свалку никем не проверенных результатов, большинство из которых тупо затеряется во времени. Так что основания/ математическая логика играют важнейшую роль для нормальной жизнедеятельности всей математики в целом, нужно больше специалистов в этих областях.
75 51375
>>51372

>а ведь Уайлз 10 лет потратил на док-во теоремы Ферма


К тому, что проверка теоремы заняла почти столько же времени, сколько доказательство теоремы Ферма.
15529270248440.png246 Кб, 400x402
76 51377
>>51370

> 1) работы Мотидзуки уже проверил Шульце


Фесенко тоже. И не только. И что? Они свою проверку у нотариуса заверят пикрелейтед? Какая польза науке от того, что один аутист разобрал писания другого аутиста?

> 2) перевести введенный в IIUT формализм на язык унивалетных гомотопических сойбоев займет где-то 10^500 лет, по консервативным оценкам, т.е. совершенно not feasible.


Ты ебнутый, понимаешь это? Мочидзукины писания это уже готовые формализмы, их никуда переводить не надо.
77 51383
>>51367

>Пруверы это гораздо более мощная вещь


И все еще никому не нужная. Вещь ради вещи. Никто в здравом уме не будет равнять свою деятельность на это.
>>51366
Если кому то интересно заниматься пруверами и прочим. Окей никаких проблем. Но если же куча этих сойбойчиских животных хочет навязать своё говно остальному миру, то тут так сказать пора заряжать наган. Любое дерьмо прекрасно пока не начинается навязывание.

>Руками проверять теоремы по 3к страниц по теме


Почему бы и нет. Если тебя интересует объект то можно и 10к страниц осилить. Вопрос мотивации.
78 51390
>>51383

>Вопрос мотивации.


Да ладно, у тебя одна жизнь и ты, вместо пиздиловки с открытой проблемой потратишь её на проверку чужого решения? Ладно, если бы это работа для бесталанного аспиранта была, так нужен именно светила, лютый спец в своей области. Да кто на такое пойдёт в здравом уме?
79 51391
>>51390
Хотя может он вечерами по выходным час уделял, тогда да, может потому и вышло 7 лет, так или иначе это совсем не круто тратить такие человеческие ресурсы на то, с чем машина справится.
80 51392
>>51383
А кто навязывает? По моему как раз вы навязываете, основания не математика, не нужно, вещь в себе, какой-нибудь анализ тоже вещь в себе, так что же, не математика?
81 51393
>>51377

>их никуда переводить не надо.


Ну-ка давай хотя бы первую строчку какой-нибудь статьи на Coq или Agda, раз не надо.
82 51396
>>51347

> Теоремы даже у Спинозы в "Этике" есть.


Как-то выглядят не математические теоремы?
83 51401
>>51392
Алсо теория множеств или категорий сами по себе являются предметами оснований, но без них выстроить формальные взаимосвязи между различными разделами математики не представляется возможным.
84 51402
>>51401
Я в курсе, но дидам похуй, они как хуесосили котягории так и хуесосят, пушо и нахуй она не нужна нам, алгебра ваша, первым делом матанализ, ну а алгебра потом. Вот вы тут тоже уподобляетесь дидам, вещь в себе, ничего себе предъява.
85 51405
>>51383
Если что-то оскорбляет твои религиозные чуйства, это не доказательство ненужности этого чего-то. Как бы тебя ни корежило, математика автоматизируема. С Брауэра ты зря горишь, к слову. Он как раз считал человека неотъемлемой частью математики и логику Гейтинга, на которой основаны пруверы, не одобрял ("интересный, но бесплодный пример").
86 51410
>>51346
>>51347
Все бы хорошо, но с чего вы называете очерчиваемый вами предмет математикой. Довольно очевидно, что в течение 20 века математика, бывшая относительно единым предметом существенно разрослась и сейчас состоит из довольно большого конгломерата областей многие из которых довольно слабо связанны между собой. И видимо кроме теоретической информатики, в остальных разделах этого разросшегося здания люди, как правило, считают себя математиками. И у всех них есть для этого полные основания так как все эти области восходят к тому что считалось математикой ранее.
87 51411
>>51390

>у тебя одна жизнь и ты, вместо пиздиловки с открытой проблемой потратишь её на проверку чужого решения?


Жизнь жестока и если кто-то решил открытую проблему первым, то тебе некуда так сказать деваться. Потому что даже если представить, что будет создан какой-то оракул-прувер который магическим образом скажет тебе верно чужое решение или нет, поверишь ли ты ему? Если да, то это тоже самое, что с самого начала принять это решение за верное. Если нет, то тебе придется разбираться, что под капотом у этого оракул-прувера, а на этой уйдет времени как на 100к страниц, а то и больше. Пойдешь ли ты на это? А если окажется, что в прувере багулинка, которая стоила тебе кучи времени? Сможешь ли ты пережить свой разрыв очка, от осознания, что всё это время ты потратил впустую?
>>51392

>А кто навязывает?


Шизоиды. Так то сообщество как правило, каждый в своем угле и занимается своими задачами. Хорошо, если возникают так сказать пересечения между областями, из этого, как правило рождается, что-то фундаментально новое.

>основания не математика, не нужно, вещь в себе


Опять же, если кто-то хочет заниматься основаниями, пруверами, копанием дилдой у себя в жопе, то хорошо, в этом нет ничего плохого. Дихотомия вида математика, не-математика, это локальный рофел пары шизоидов.
>>51405

>это не доказательство ненужности этого чего-то.


Ну я в том посте допустил неточность. Под ненужностью я имел в виду, ненужность за пределами работ по основаниям и построениям пруверов.

>Как бы тебя ни корежило, математика автоматизируема.


Абсолютно безосновательное утверждение. Впрочем вера в святой компьютер это самый настоящий бич нашего времени, поэтому я не осуждаю тебя.

> С Брауэра ты зря горишь, к слову.


Ты явно перепутал меня с кем-то другим. На заре раздела, помнится тут было много кидания говна по коконструктивизму и прочему. Я тогда дипломатично сидел в ридонли, потому что уже тогда понимал, что это не обсуждение, а самый, что ни на есть, шитпостинг.
88 51413
>>51410

>в течение 20 века математика, бывшая относительно единым предметом существенно разрослась и сейчас состоит из довольно большого конгломерата областей многие из которых довольно слабо связанны между собой


Да. Поэтому мы выделяем ту часть, которая связана довольно тесно, и говорим, что это core mathematics. То есть вышеописанное.
Конструктивизм дал нам компьютеры, компьютеры привели к развитию разнообразной комбинаторики, большая часть которой не интересна никому в принципе, но есть исключения в виде например тропической геометрии. Не то что бы дискретными штуками не интересовались раньше, просто раньше вычислительных мощностей не было. Примерно как с машинным обучением, которое придумали в начале 1960-х, а взлетело только сейчас. Аналогично комбинаторикой ещё Гаусс интересовался, просто руками там много не посчитаешь.

>в остальных разделах этого разросшегося здания люди, как правило, считают себя математиками. И у всех них есть для этого полные основания


Это понятно. Просто согласись с тем, что если два представителя одной области ничего не понимают в работах друг друга, то это не совсем область? Ну вот Поппер сказал, что каждый человек философ. Ну мы здесь решили что каждый человек математик. Дело-то не в этом. Имеется некоторое количество людей, знающих некоторый условно стандартный материал, не обязательно использующих его в своей работе, но тем не менее, они прекрасно поймут друг друга. Это всё уже было описано 17 лет назад тут:
http://imperium.lenin.ru/~verbit/MATH/programma.html
Помимо создания нового знания, есть еще такая вещь как систематизация. Концептуальная математика об этом. Если не заниматься систематизацией, и не развивать язык, то доступ к знаниям затруднится и знания будут утеряны.
Поэтому нахуй это надо. С административной точки зрения: имеется очень расширенное определение математики, как ты предлагаешь. Хорошо. В одном департаменте сидят комбинаторщики, чистые математики, физики, компьютер саентисты. Никто из них не понимает друг друга, но все конкурируют за одни ресурсы. Что дальше? Полное вырождение. Если невозможно вести беседу, нет общих точек соприкосновения, предметом дискурса станет наличие академических регалий, цитируемость, и т.д. а от этой ситуации выигрывают только жулики и профанаторы. Имеем науку как в Мавритании.
88 51413
>>51410

>в течение 20 века математика, бывшая относительно единым предметом существенно разрослась и сейчас состоит из довольно большого конгломерата областей многие из которых довольно слабо связанны между собой


Да. Поэтому мы выделяем ту часть, которая связана довольно тесно, и говорим, что это core mathematics. То есть вышеописанное.
Конструктивизм дал нам компьютеры, компьютеры привели к развитию разнообразной комбинаторики, большая часть которой не интересна никому в принципе, но есть исключения в виде например тропической геометрии. Не то что бы дискретными штуками не интересовались раньше, просто раньше вычислительных мощностей не было. Примерно как с машинным обучением, которое придумали в начале 1960-х, а взлетело только сейчас. Аналогично комбинаторикой ещё Гаусс интересовался, просто руками там много не посчитаешь.

>в остальных разделах этого разросшегося здания люди, как правило, считают себя математиками. И у всех них есть для этого полные основания


Это понятно. Просто согласись с тем, что если два представителя одной области ничего не понимают в работах друг друга, то это не совсем область? Ну вот Поппер сказал, что каждый человек философ. Ну мы здесь решили что каждый человек математик. Дело-то не в этом. Имеется некоторое количество людей, знающих некоторый условно стандартный материал, не обязательно использующих его в своей работе, но тем не менее, они прекрасно поймут друг друга. Это всё уже было описано 17 лет назад тут:
http://imperium.lenin.ru/~verbit/MATH/programma.html
Помимо создания нового знания, есть еще такая вещь как систематизация. Концептуальная математика об этом. Если не заниматься систематизацией, и не развивать язык, то доступ к знаниям затруднится и знания будут утеряны.
Поэтому нахуй это надо. С административной точки зрения: имеется очень расширенное определение математики, как ты предлагаешь. Хорошо. В одном департаменте сидят комбинаторщики, чистые математики, физики, компьютер саентисты. Никто из них не понимает друг друга, но все конкурируют за одни ресурсы. Что дальше? Полное вырождение. Если невозможно вести беседу, нет общих точек соприкосновения, предметом дискурса станет наличие академических регалий, цитируемость, и т.д. а от этой ситуации выигрывают только жулики и профанаторы. Имеем науку как в Мавритании.
89 51414
>>51413

> Имеется некоторое количество людей, знающих некоторый условно стандартный материал, не обязательно использующих его в своей работе, но тем не менее, они прекрасно поймут друг друга.


И разумеется, стандартность материала определяет некий сойбой, на которого у тебя ссылка. Ну вот онскозал, внемлите.

> Это понятно. Просто согласись с тем, что если два представителя одной области ничего не понимают в работах друг друга, то это не совсем область?


Если игнорировать факт существования оснований, к которым все в области сводится. Только такой игнор это следствие непрофессионализма. Конечно, некоему сойбою проще сказать "то что я знаю это кор математикс, а чего я не знаю это хуйня бородня", но это опять же школьничество и непрофессионализм.
90 51415
>>51411

>под капотом у этого оракул-прувера


Так смысл пруверов в том, что они основаны на простых правилах, в которых очень тяжело ошибиться при его написании.
91 51416

> http://imperium.lenin.ru/~verbit/MATH/programma.html


> Мне не кажется, что все области математики одинаково ценные; я уверен, что самоценности математика сама по себе не имеет.


Классика, "тут играем, тут не играем".
https://www.youtube.com/watch?v=ZlCed-6GkAM
92 51417
>>51414

>стандартность материала определяет некий сойбой, на которого у тебя ссылка


С этим описанием согласится любой математик. Выше я уже упоминал Маклейна, могу еще посоветовать почитать Дьедонне. Да хоть Вавилова. Везде то же самое.

>Если игнорировать факт существования оснований, к которым все в области сводится


У математики вообще нет оснований. По словам Манина, математика "висит в воздухе". Более того, нахождение связей, наведение мостов между этими парящими островами знания, это то что определяет деятельность математика.

>но это опять же школьничество и непрофессионализм


Школьничество это подкреплять свои высеры несуществующими цитатами Браузера, потом упрекать оппонента ссылками на авторитеты, а на встречные аргументы отвечать бредом в духе "слова Брауэра вычисляются, а Манина или Гротендика нет, потому что они сойбои-хипстеры".

>чего я не знаю это хуйня бородня


Я уверен что ты даже линейную алгебру не в состоянии выучить, дело не в этом, тебя просто интересует игра в названия. Типа, Максимка сказал слово "топос", в Хачкеле есть термин "монада", а в унивалентном сойбойстве "гомотопия".
Этого достаточно для обоснования важности твоей хуйни.
"Математика это вычислимость". Как насчет невычислимых функций? Или неконструктивных вычислений? Ррряя, не математика, яскозал, я привел цитаты и сослался на авторитеты, а тебе нельзя, мои авторитеты вычислимы в автоматах Дебраузера/теории обучения Ватника/представимы в модели Миколова, и всё, дальше элементарное следствие изоморфизма Карри-Говарда в категории Int интуиционистских типов.
Содержательная математика тебе в принципе не интересна, тебе интересны её несуществующие "основания". При чём, тебя тут много раз называли праграммистом, но это большой комплимент, потому что область, интересная тебе, т.е. пруверы, это даже не программирование, это тестирование программ.
>>51416
Я еще понимаю дiдов с диэксдиуай, которые не зная контекста данного произведения вытаскивают отдельные фразы и утверждения и начинают гоготать над ними. Но я же выше объяснил, что там имелось в виду, и к чему это написано.
Математика изолируется до некоторого сообщества понимающих друг друга людей. А то что общее у этих людей это язык пучков, производных категорий, спектральных последовательностей, характеристических классов и т.д., ну извините как бы, так получилось.
Можно, конечно, определить иначе, исходя из оснований, но тогда размер математического сообщества сузится с нескольких десятков тысяч профессионалов до трех анальных клоунов, два из которых уже умерли.
Что признает сам унивалентный сой-тестировщик тут:
>>51367

>Другой вопрос, что во все это могут полтора человека помимо Мортберга


Такие дела.
92 51417
>>51414

>стандартность материала определяет некий сойбой, на которого у тебя ссылка


С этим описанием согласится любой математик. Выше я уже упоминал Маклейна, могу еще посоветовать почитать Дьедонне. Да хоть Вавилова. Везде то же самое.

>Если игнорировать факт существования оснований, к которым все в области сводится


У математики вообще нет оснований. По словам Манина, математика "висит в воздухе". Более того, нахождение связей, наведение мостов между этими парящими островами знания, это то что определяет деятельность математика.

>но это опять же школьничество и непрофессионализм


Школьничество это подкреплять свои высеры несуществующими цитатами Браузера, потом упрекать оппонента ссылками на авторитеты, а на встречные аргументы отвечать бредом в духе "слова Брауэра вычисляются, а Манина или Гротендика нет, потому что они сойбои-хипстеры".

>чего я не знаю это хуйня бородня


Я уверен что ты даже линейную алгебру не в состоянии выучить, дело не в этом, тебя просто интересует игра в названия. Типа, Максимка сказал слово "топос", в Хачкеле есть термин "монада", а в унивалентном сойбойстве "гомотопия".
Этого достаточно для обоснования важности твоей хуйни.
"Математика это вычислимость". Как насчет невычислимых функций? Или неконструктивных вычислений? Ррряя, не математика, яскозал, я привел цитаты и сослался на авторитеты, а тебе нельзя, мои авторитеты вычислимы в автоматах Дебраузера/теории обучения Ватника/представимы в модели Миколова, и всё, дальше элементарное следствие изоморфизма Карри-Говарда в категории Int интуиционистских типов.
Содержательная математика тебе в принципе не интересна, тебе интересны её несуществующие "основания". При чём, тебя тут много раз называли праграммистом, но это большой комплимент, потому что область, интересная тебе, т.е. пруверы, это даже не программирование, это тестирование программ.
>>51416
Я еще понимаю дiдов с диэксдиуай, которые не зная контекста данного произведения вытаскивают отдельные фразы и утверждения и начинают гоготать над ними. Но я же выше объяснил, что там имелось в виду, и к чему это написано.
Математика изолируется до некоторого сообщества понимающих друг друга людей. А то что общее у этих людей это язык пучков, производных категорий, спектральных последовательностей, характеристических классов и т.д., ну извините как бы, так получилось.
Можно, конечно, определить иначе, исходя из оснований, но тогда размер математического сообщества сузится с нескольких десятков тысяч профессионалов до трех анальных клоунов, два из которых уже умерли.
Что признает сам унивалентный сой-тестировщик тут:
>>51367

>Другой вопрос, что во все это могут полтора человека помимо Мортберга


Такие дела.
93 51418
>>51417

>тебя просто интересует игра в названия. Типа, Максимка сказал слово "топос", в Хачкеле есть термин "монада", а в унивалентном сойбойстве "гомотопия".


we have a winner
самоутверждайтесь в Computer Science, не трогайте мои пучки
94 51419
>>51417

>ряяя сойбои


Ты можешь своих протыкателей не упоминать в каждом посте?
95 51420
>>51418
Тестирование сой-программ это не совсем компьютер саенс, но в целом да. А математика и пучки это более-менее синонимы.
15509206720740.jpg52 Кб, 960x720
96 51422
>>51417

> С этим описанием согласится любой математик.


Ага, а кто не согласится, тот не настоящий. Есть такой прикол - "ненастоящий шотландец". Вот такие приколы, самореференции, постсойбойство от Фейерабенда, ссылка на " авторитетов" маргиналов и т.п трешак уровня рыбникова типа отрицания оснований - твой уровень понимания математики. Ну и швитая вера в абсолютную правоту, кудаж школоте без этого
97 51426
>>51417

> У математики вообще нет оснований. По словам Манина, математика "висит в воздухе".


> Более того, нахождение связей, наведение мостов между этими парящими островами знания, это то что определяет деятельность математика.


Это и называется "основания". То, из чего можно вывести все разделы математики или к чему можно свести любой раздел. Ты понимаешь, что противоречишь сам себе? Манин блядь какой-то, математика у него в воздухе висит. Че несешь-то?
98 51427
>>51422

>приколы, самореференции, постсойбойство


Чем твоё определение отличается от моего? Тем что я могу сослаться на десяток учёных, которые дофига чего сделали, что признано людьми, а не только на Брауэра и Лёфа (при чём второй к науке ну совсем никаким боком)?
Какой вес имеет твой пиздёж здесь? Математики ты не знаешь совсем никакой, это выяснили ещё семь тредов назад. Про вычислимость священного интуиционистского писания и сведение гомологической алгебры к нумерации Гёделя мы уже слышали, реальные аргументы можно? Или вся возможная аргументация сводится к усмотрению в моих или чьих-то ещё словах риторических приёмов, которыми ты сам регулярно пользуешься? Вера в вычислимость вычислима, а вера в что-то другое это платонизм, Аллах и т.д.

>а кто не согласится, тот не настоящий


Кто не знает пучков, тот не математик. Ты не знаешь ничего кроме Quality Assurance, поэтому не математик. В свете этого особенно смешны твои нападки на Вербицкого или ещё кого-то, как будто он не знает что такое интуиционизм или ты понимаешь хотя бы два слова в любой из его работ.
99 51428
>>51426
Ты тупой, это не называется "основания". Основания это попытка подвести фундамент, то есть вопросы типа какая аксиома важнее, аксиома выбора или аксиома детерминированности, или ZF без C но с аксиомой недостижимого кардинала, или ещё хуй знает что. Содержательной математики это не касается. Основания это изамарфизм Карри-Говарда грубо говоря, то есть абсолютно бессмысленный результат.
Наведение мостов это например "Rosetta Stone" Вейля, словарь "Fonctions – faisceaux" Гротендика, и т.д.
Я могу приводить десяток примеров, ни один из которых ты не поймёшь, потому что у тебя отсутствует целиком и полностью математическая культура, и знаний в математике у тебя никаких нет.

>Манин блядь какой-то


>Манин


>какой-то


Можно было бы сказать, что ты не умеешь пользоваться Гуглом, но это тебе не поможет, по выше названным причинам даже простое перечисление результатов какого-то конкретного ученого это пустой звук для тебя, ты их значения никогда не поймешь.
100 51429
Т.к. если бы эти знания были, то не пришлось бы объяснять что без гипотез высказанных Вейлем, без применения Картаном и Серром техники пучков к алгебраической геометрии, без работ Гротендика, наконец, никакие топосы не появились бы, в принципе.
101 51430
>>51426
Анон, какой у тебя уровень понимания математики? Ты вообще изучал когомологии и пучки, или просто научпопом обмазался?
102 51442
>>51427

>Кто не знает пучков, тот не математик.


Кто не выебал тебя в очко, тот не математик.
Нашел дурачок в лесу пучок 103 51443
>>51427

> Кто не знает пучков, тот не математик.


Тыскозал? Сойбой какой-то? Покажи хоть святое писание, где эта хуерга озвучена. Или реально сам придумал?
104 51458
>>51410

>Довольно очевидно, что в течение 20 века математика, бывшая относительно единым предметом существенно разрослась и сейчас состоит из довольно большого конгломерата областей многие из которых довольно слабо связанны между собой.


Я тебя огорчу, но всё как раз наоборот. Математика стало единой как никогда в 20 веке.
105 51463
>>51458
Этот деятель либо просто дрочит на давно всеми забытого вербицкого, либо сам Вербицкий и есть. Все его маняидеи по поводу математики дословно как раз из жжшечки вышеупомянутого сойбоя.
106 51465
>>51458
От нее оч сильно оторван CS, до такой степени, что в CS переоткрываются забытые области математики и именуются навроде "вычислимая дискретная теория хуйни". Люди которые в этой теме находятся они вообще начисто оторвано от какой-либо математической реальности, для них вся математика это наличие соответствующего алгоритма.
107 51467
>>51465
В чем твоя выгода нести хуйню о том, что ты даже примерно не представляешь?
108 51473
>>51465
У нас на кафедре (прикладная математика) недавно читали семинар по какой-то новой статье о симметричных линейных программах, так там оратор 40 минут доказвал хитровыебанными CS методами один из базовых результатов теории групп для Sn. CS-наркоманы варятся в своём чане прямо как в известном скриншоте статьи из то ли медицины то ли биологии про инновационный метод расчёта площади под графиком. Куда уж там понять абстракции вроде пучков.
109 51476
>>51473
А что за результат?
110 51485
>>51467
cs мартышка порвалась лул
111 51488
>>51485
Хуй соси - губой тряси, школопитек.
112 51491
В чем проблема на ряду с какими-то элементами теории множеств в школе подать соответствие Карри-Говарда?
113 51492
>>51491
Смысл?
114 51493
>>51488

>кококо cs наука


- переоткрываем решетку конечных множеств
- переоткрываем функцию над конечным телом
- переоткрываем конечную меру
- переоткрываем симплициальные комплексы ("теория графов")
- открываем новые результаты в комбинаторике методом тупого перебора

ну и всякие там теории алгоритмов, теории кодирования, которые сугубо прикладные инженерные дисциплины, такая же наука как сопромат.
115 51498
>>51493
Т.е претензии только к названиям? Гамалогии бездуховно называют, потеря потерь, что же делать.
116 51499
>>51493
В этом и состоит трагедия нашего времени, когда из программирования ушли все люди с истинно математическим образованием, в эту пустоту влились тысячи кс-мартыханов.
117 51500
>>51491

>в школе подать соответствие Карри-Говарда?


С тем же успехом можно давать в школу аксиому выбора.
118 51503
>>51500
да и в университете это оч забавно давать, не зная что полезнее, аксиома выбора или вторая теорема об изоморфизме, обе пригодились мне ниразу
119 51504
>>51503
Говночист жалуется, что науки ему не пригодились.
И хочет чтобы образовательную программу подстроили под говночистов.
15533495565440.png662 Кб, 650x532
120 51505
Обличительные кукареканья со стороны секты Свидетелей Швитых Пучков имели бы хоть какой-то смысл, если бы в пучках и в математике вообще было бы что-то кроме объектов и отношений между ними. Ну так что там ещё есть? Швятая вера? С этим в храм, покемонов ловить.
121 51506
>>51499
Для кого же это трагедия?
122 51511
>>51505
Откуда ты знаешь, что есть в пучках, если ты не в состоянии понять определение пучка?

>In the nontrivial cases, it is often a deep geometric idea that is caught up in the knowledge of a differential. In most cases, it is in fact a matter of computability: the higher differentials of the spectral sequence are mathematically defined, but their definition is not constructive.


>mathematically defined, but not constructive


Что не удивительно, поскольку конструктивность не имеет никакого отношения к математике.
С точки зрения конструктивизма не верна даже фундаментальная теорема арифметики. Данная теорема утверждает, что для любого целого числа, большего 1 и не простого, существует единственное разложение на простые множители. Возьмём сравнительно небольшое число 10^(10^10^10^10^10^10^10^10^10^10)+23. Какое у него разложение? Никакое, поскольку тепловая смерть вселенной наступит раньше, чем мы сможем его вычислить, учитывая принцип Ландауэра.
Для конструктивиста нет никакой разницы между достаточно большими числами (даже теми, для записи которых не требуются стрелки Кнута или стрелки Конвея) и недостижимым кардиналом.
Между вычислением спектралок и верой в Аллаха. Между топосами Гротендика и ловлей покемонов.
123 51514
>>51511

> С точки зрения конструктивизма не верна даже фундаментальная теорема арифметики. Данная теорема утверждает, что для любого целого числа, большего 1 и не простого, существует единственное разложение на простые множители. Возьмём сравнительно небольшое число 10^(10^10^10^10^10^10^10^10^10^10)+23. Какое у него разложение? Никакое, поскольку тепловая смерть вселенной наступит раньше, чем мы сможем его вычислить, учитывая принцип Ландауэра.


Ну если так, на каком основании ты заявляешь, что вышеупомянутая теорема верна? Сам же привёл случай, для которого она недоказуема на практике. Значит, ты веруешь в то, что она верна? Поди и умным себя считаешь, новости смотришь?
124 51515
>>51514
Я просто продемонстрировал два случая, один посложнее другой попроще, в которых математики считают некоторые утверждения математически корректным и верными, а шизики-конструктивисты те же самые утверждения отрицают и орут "ррря врёти, нет такого". Ты же верун и есть, верун в вычислимость. Есть невычислимые функции? Нет такого, не верю. Понятно. Запишись на конференцию сторонников теории плоской земли, найдешь там единомышленников.
125 51520
>>51515
>>51514
Математикам вообще на вычислимость глубоко наплевать, с этим в CS.
126 51521
>>51520
Дык я про это как бы и говорил. Товарищ на протяжении девяти тредов утверждает, что математика это есть вычислимость. Других аргументов, кроме того что данное утверждение вычислимо, пока не было.
127 51522
>>51515

> Я просто продемонстрировал два случая, один посложнее другой попроще, в которых математики считают некоторые утверждения математически корректным и верными,


А на каком основании ты считаешь корректным то, что невозможно доказать? Вероваешь? А математика к твоей вере какое отношение имеет?
>>51520

> Математикам вообще на вычислимость глубоко наплевать,


Раз пукнутый такскозал, ок
128 51523
>>51522
Какое отношение к математике имеет твоя вера в вычислимость? Если ты даже фундаментальную теорему арифметики отрицаешь, какой из тебя математик?
129 51524
>>51511
>>51522
Легко видеть, что сумма цифр этого числа делится на 3. Значит, само число делится на 3. "невозможно доказать", my ass. Пидоры.
130 51526
>>51524
Мой прикол оказался слишком сложным для тебя. Доказать-то возможно, но только это не конструктивное доказательство. Почему? Потому что явное построение отсутствует, это критерий конструктивности. Таким образом показано, что конструктивность не имеет отношения к математике.

>Значит, само число делится на 3


Речь шла про выписывание факторизации, но ладно, не важно.
131 51528
>>51523

> вера в вычислимость?


Чухомор, какая вера в вычислимость? Ты о чем вообще?
132 51531
>>51528
Ну тебе выше показали, что можно доказать невычислимое утверждение. Какой из тебя математик, если ты не понимаешь, что является доказательством, а что нет?
133 51533
>>51511
В чем проблема? Можно просто запретить очень большие числа. Они в общем-то и не нужны. И даже не особо-то числа.
134 51534
>>51533
А зачем их запрещать? У математиков нет проблемы с этими числами. Как и с высшими дифференциалами в спектральных последовательностях. Как и с топосом Гротендика, в аксиомы которого входит утверждение эквивалентное существованию недостижимого кардинала. Как и с невычислимыми функциями.
У конструктивиста есть проблемы со всем этим. Поэтому ему надо запретить. С таким мышлением лучше депутатом в гос думе работать, никак не математиком.
Если рассуждать как конструктивист, то практически все содержательное из математики упраздняется, остаётся разве что перекладывание палочек в машине Поста. В принципе понятно, у человека есть желание называть и считать себя математиком, а не QA-тестером или охранником на соевом складе; при этом желания или возможности выучить хоть что-то из математики нету, надо же ведь и аниме смотреть и вообще жизнь тяжелая. Вот и приходится запретить всю математику, кроме палочек.
135 51535
>>51533

>И даже не особо-то числа


А, ну да, элемент \mathfrak$Z$ кольца целых чисел это не особо-то и число. Вас понял.
136 51536
>>51534

>ак и с топосом Гротендика, в аксиомы которого входит утверждение эквивалентное существованию недостижимого кардинала


Какое? Знаю только, что юниверсумы Гротендика влекут существование недостижимого кардинала.
137 51538
>>51536

>юниверсумы Гротендика влекут существование недостижимого кардинала


Угу, я про это
https://en.wikipedia.org/wiki/Grothendieck_universe#Grothendieck_universes_and_inaccessible_cardinals
Непосредственно же в аксиомы топоса входит понятие малой категории, которое опирается на упомянутые выше основания
https://ncatlab.org/nlab/show/small+category
https://ncatlab.org/nlab/show/locally+small+category
htps://ncatlab.org/nlab/show/size+issues
138 51540
>>51538

>Непосредственно же в аксиомы топоса входит понятие малой категории, которое опирается на упомянутые выше основания


Понял, спасибо.
139 51541
>>51531

> Ну тебе выше показали, что можно доказать невычислимое утверждение. Какой из тебя математик, если ты не понимаешь, что является доказательством, а что нет?


Ты про потенциальную бесконечность что-нибудь слышал? Ах да, ты ж в неё не можешь.
140 51542
>>51536
>>51538
Недостижимые кардиналы и прочее такое это просто буковки. Их можно и на машине Тьюринга переставлять. Элементы алфавита теории соевых гамалогий, типы, для которых определены конструкторы итд. Никакого другого содержания за ними не стоит. Но вы веруете, что у таких обьектов есть какое-то ещё значение, смысл кроме конструктивного (элементы алфавита и сочетания элементов). Вы сколько ни выебуйтесь, а выше машины Тьюринга не прыгнете, это ещё в 30х годах прошлого века доказано. Все ваши гамалогии это просто программы для универсальной машины Тьюринга.
141 51543
>>51541
Я-то слышал. Последовательный и честный конструктивист её тоже отрицает, непоследовательный и нечестный начинает что-то говорить про машину Тьюринга в этом месте. Как же получается, что разложение на простые гуглп лекса или числа Грэма существует, если его нельзя явно построить?
142 51544
>>51543

> оследовательный и честный конструктивист её тоже отрицает


Хуйни не неси, её даже Брауэр не отрицал. Как вариант, ты как обычно не знаешь того, о чем пытаешься спорить и путаешь конструктивизм с финитизмом.
143 51545
>>51542

>Никакого другого содержания за ними не стоит


Вообще-то стоит, просто ты не в состоянии его понять.

>выше машины Тьюринга не прыгнете, это ещё в 30х годах прошлого века доказано


Кем доказано? Тезисом Чёрча? Ты понимаешь, что такое доказательство? При чём никто в здравом уме этого не утверждал, сам тезис сводит только лямбда-калькулюс к вычислениям машине Тьюринга, чтобы утверждать что математика эквивалентна лямда-калькулюсу, надо очень серьёзно упороться.

>Все ваши гамалогии это просто программы для универсальной машины Тьюринга


Угу, все ваши гамалогии это символы, нарисованные мелом на доске, значит математика это раздел каллиграфии. Понятно. Главное что тебе учить ничего не надо. Палочки выучил складывать, всё, математик.
http://www.math.harvard.edu/quals/index.html
Можешь объяснить почему сюда входят гамалогии, но не входят лямбда-функции? И почему там вообще есть что-то кроме перекладывания палочек?
144 51546
>>51544

>её даже Брауэр не отрицал


"Даже". Браузер, тот который сначала защитил диссертацию про интуиционизм, а потом доказал свои основные математические результаты, типа теорем о неподвижной точке, неконструктивно? Этот? Ну как бы он своими работами показал, чего стоит конструктивизм (ничего) и насколько он применим в математике (ни насколько).
145 51547
>>51545

> Вообще-то стоит, просто ты не в состоянии его понять.


Да-да, новое платье короля не видят только ебланы. Давай, поясни за это невидимое содержание. Во что я там не вероваю, в каких пучковых покемонав.

> Можешь объяснить почему сюда входят гамалогии, но не входят лямбда-функции?


Потому что это не курс по основаниям? А только по частному случаю оснований?

> И почему там вообще есть что-то кроме перекладывания палочек?


А есть ли?
146 51548
>>51546

> "Даже". Браузер, тот который сначала защитил диссертацию про интуиционизм, а потом доказал свои основные математические результаты, типа теорем о неподвижной точке, неконструктивно?


Потому что конструктивно на тот момент мало что доказать можно было? Это сложно вообще-то. И одному человеку полную реформу математики не потянуть.
147 51550
>>51543

>его нельзя явно построить


Нет, ну алгоритм-то есть, берёшь все простые, не превосходящие N(тоже алгоритм существует), потом делишь на максимальное, пока остаток 0, увеличиваешь степень на 1, потом берёшь следующее и так, пока не дойдёшь до последнего. То, что это работать будет вечность не значит, что нельзя явно построить. Явно построить значит предоставить алгоритм, отрабатывающий за конечное время.
148 51553
Бертран Рассел о чистой математике: «Чистая математика — это такой предмет, где мы не знаем, о чём мы говорим, и не знаем, истинно ли то, о чём мы говорим». Годфри Харди гордился, что является «чистым математиком», деятельность которого не приносит абсолютно никакой практической пользы, подробно раскрыв тему в эссе «Апология математика»[1].

По ироническому утверждению В. И. Арнольда, разница между чистой и прикладной математикой не научная, а социальная и залючается в том, что чистому математику платят за открытие математических фактов, в то время как прикладному математику платят за решение практических задач. Арнольд также замечает, что в России почти каждый математик сочетал «чистую» и «прикладную» математику.[2]
149 51555
>>51553
Прикладной математики вообще не существует, потому что вся математика прикладная. Если математическая теория не помогает доказать утверждения, для формулировки которой не требуются понятия этой теории, то это говно, а не теория.
То есть с одной стороны оказывается весь core mathematics вокруг теоремы Атьи-Зингера; с другой не имеющая никаких внешних применений параша, вроде классического анализа с оценками, "очень общей алгебры" в духе теории квазигрупп, комбинаторики, изучения специальных эллиптических функций и тэта-функций, мат. логики вроде теории моделей, n-категорий и прочих попыток построить "гомотопическую алгебру", и т.п., можно долго ещё перечислять.
В данном треде наблюдаем очередной пример, т.е. конструктивизм:
>>51367
Здесь мы выяснили, что заниматься конструктивными основаниями могут из ныне живущих где-то 1.5 человека,
>>51548
А здесь, что конструктивные принципы очень сложны в реализации, и поэтому не применимы на практике в данный момент.
Осталось понять, зачем ими вообще заниматься. Чтобы коммунизм наступил? В математике и так все работает.
150 51558
>>51553

> Бертран Рассел о чистой математике: «Чистая математика — это такой предмет, где мы не знаем, о чём мы говорим, и не знаем, истинно ли то, о чём мы говорим».


Ну я и говорю. Без конструктивного подхода математика это раздел богословия.
>>51555

> А здесь, что конструктивные принципы очень сложны в реализации,


> и поэтому не применимы на практике в данный момент.


На данный момент как раз применимы, сейчас не 1907 год.
151 51559
>>51558
Лучше уж раздел богословия, чем сойбойства.

https://otr-online.ru/programmy/gamburgskii-schet/mihail-tsfasman-fenomen-20790.html

>Что делает теология? Она рассуждает о столь же общих проблемах, связанных с Богом, со Священным Писанием, с церковным преданием. И почему первое должно считаться наукой, а второе – нет, я не понимаю.


>Я участвовал пару раз в таких семинарах, посиделках с богословами. И оказывается, что, по крайней мере в этих конкретных сообществах, мы с ними думаем одинаково. Я имею в виду сейчас не предмет рассмотрения, а именно стиль мышления, вплоть до отношения ко всяким общественно острым фактам.



Можешь начинать рваться.

>На данный момент как раз применимы


В манямирке? Теорему Коши о среднем доказали конструктивно уже? Вообще хоть какую-нибудь теорему, полученную после 1920-го?
152 51562
>>51559
Вся актуальная математика доказана конструктивно. Разумеется, кроме невнятного бреда про большие кардиналы и прочих подобных вещей.
153 51563
>>51562
"Актуальная математика" в твоём смысле это ~0.000001% от всей математики.
154 51574
>>51558

>Без конструктивного подхода математика это раздел богословия.


Да с ним, тоже раздел богословия.
155 51580
>>51574

> Да с ним, тоже раздел богословия.


Отнюдь. Брауэр показал что такое математика на самом деле. А всякие веруны до сих пор хуйней страдают.
156 51581
>>51553

>Бертран Рассел


Охеренный чел!

>Годфри Харди


Красава бля!

>В. И. Арнольда


Мой личный математический кумир, ёпта.
157 51583
>>51580
Я и говорю, доказал что интуиционистский пиздеж ничего не стоит тем, что сам не пользовался им на практике. И Воеводский тоже не пользовался в доказательстве теоремы об изоморфизме норменного вычета. За перекладывание палочек премию Филдса не дадут, это только в коррекционной школе, куда ты ходил, такие упражнения.
158 51587
>>51580
О, а вот и пророк Брауэр появился. Это у вас новое ветвь родилась я смотрю? Брауэризм.
159 51590
>>51583
Какой раздел в математике аналогичен гендер стадис в ноуке?
160 51591
>>51590
ыы основания ыхыхы
1492932464568.png3,4 Мб, 3288x2872
161 51592
162 51593
>>51590
Комбинаторика, теория графов, теория чисел
163 51594
>>51592
Автор ты сука?
164 51595
>>51590
первая волна илитблядства: хаскiль, дрочка на мощные системы типов и кокотегориальность, утверждение о прикладной пользе всего этого в повседневном программировании
вторая волна илитблядства: дрочка на завтипы, пруверы, начало интуиционистского маразма
третья волна илиблядства, предтерминальная: отход в кококонструкивистский манямир с кукарекам про полную автоматизацию математики, постоянная фокусировка на основаниях
по всей видимости, четвёртая финальная стадия: полная деградация до ультрафинитизма и понимания математики на уровне древних греков

тут можно провести аналогию с фемками
первая волна - задачи чисто прикладные, движение по законодательно-правовому направлению
вторая волна - направление тоже вроде прикладное, хотя задачи весьма расплывчатые, уже появляются какие-то обощения и теор. обоснования, вроде теории пересечений
третья волна - полнейший пиздец с gender science и privilege theory, и прочими фундаментальными открытиями, которые должны изменить мир

в обоих случаях имеем типичный криптомарксизм: всё плохо, потому что всё с самого основания ниправильна, нужно всё изменить, мы знаем как это сделать, ко-ко-ко ривалюция нужно привозмогать и высрать нового человека, и новое общество, без классов, полового диморфизма и модус понес, аминь
ну и конечно же бесконечный самоподдув, заключающийся в ощущении себя неибаца прогрессивным
165 51596
>>51595
Спизданул как господь, сохранил.
166 51740
>>51595

>полная деградация до ультрафинитизма и понимания математики на уровне древних греков


Разве древние греки были ультрафинитистами?
На уровне пещерных людей, скорее.
Да и то, какой там уровень был у пещерных людей --- мы не знаем.
Может они и представляли актуальную бесконечность (во снах).
167 51742
>>51740
Архимед однажды написал книгу "Псаммит", в которой проиллюстрировал, что самого большого натурального числа нет. Был срач, с Архимедом много спорили.
168 51745
>>51740
Не только ультрафинитистами, еще не верили в отрицательные числа, ноль и вообще числом считали только то, что выражает какое-то геометрическое отношение. Унаследовали науки от вавилонян и египтян и проебали всё из-за дремучего догматизма.
169 51746
>>51745
У них были отдельно числа - это 1, 2, 3, 4, ... , и отдельно были отношения - это положительные рациональные числа. Отношения не воспринимались как числа, это были совсем отдельные сущности.
171 52226
>>52214
Бб двумя блоками ниже.
172 52379
>>52345
В быдломатематике перекладывают палочки и проверяют на прувере полученные 60 лет назад и используемые с тех пор ежедневно результаты;
В илитоматематике доказывают теоремы.

Кстати, прямо сейчас тебе могу доказать, что конструктивная математика это не математика. Назовем функцию f(x) конструктивной, если её можно задать некоторой формулой или правилом, описываемым текстом конечной длины; это соответствует вычислимой на машине Тьюринга функции.
Легко видеть, что множество таких функций не более чем счётно (проверка предоставляется читателю); в то время как множество функций непрерывных на отрезке [0; 1] уже имеет мощность континуум, а множество всех функций не меньше гиперконтинуума; (даже функций, возвращающих лишь два значения, уже гиперконтинуум, потому что можно построить биекцию в 2^{R}).

Таким образом, весь функциональный анализ попадает под запрет бешеной религиозной секты конструктивизма, ведь функциональное пространство по определению полно, и включает в себя все функции, а не только одобренные лично Чёрчем. Гомологическую алгебру запретили несколько тредов назад из-за того что в спектральных последовательностях высшие дифференциалы вычисляются неконструктивно; теорию топосов упразднили из-за понятия малой категории, и т.д.

В общем все содержательное, что позволяет доказывать теоремы и получать результаты, под запретом, остается подбирать давно используемые в математиками теоремы и передоказывать их на компьютере раз в 50 лет.
173 52381
Фундаментальные причины религиозного маразма, по видимому, состоят в том, что это плохой подход изначально. В математике есть вычислимые функции, полувычислимые, невычислимые. Всё что есть в конструктивизме, уже есть в математике, и было три тысячи лет назад, тогда как историю конструктивизма можно начинать отсчитывать самый максимум от Кронекера.
То есть ты приходишь в уже устоявшуюся традицию, и говоришь что это не так, то нельзя, и вообще всё надо ограничить; вот есть мои принципы, в которые я верю, в данном случае вычислимость, всё остальное под запрет.
Религиозный фундаментализм как он есть, ваххабизм из таких же посылок исходит и так же действует.
Вот, у нас истинное понимание ислама математики, оно было со временем утеряно из-за всяких кафиров Канторов и Пеано, но ничего, мы пришли чтобы запретить всё плохое и заодно перечеркнуть последние 400 лет прогресса вашей науки. Круто.
174 52386
>>52379
Вопрос не в тему, но стоит читать "Логику" Чёрча? Актуально? Полно?
175 52470
>>52404
Доказательства несоизмеримости некоторых величин привели к расширению понятия числа; доказательство неразрешимости в радикалах уравнения общего вида со степенью ≥5 привели к теории Галуа, аналогично кстати к ней привели доказательства невозможности построения циркулем и линейкой правильных n-угольников для некоторых n (оставляя в стороне искусственные ограничения, поставленные в этих задачах, кому вообще может быть принципиально в радикалах решено уравнение или нет, в тэта-функциях уравнение любой степени кстати можно решить); конструктивизм в принципе не приведет ни к какому расширению, потому что он уже содержится в математике.
В математике дофига построимого и вычислимого. Просто если ей заниматься не только на школьном уровне, а хотя бы векторное пространство пополнить по норме, то всё, пиздец, там будут функции которые никак нельзя описать конечным правилом, при чем несчётное количество таких функций.
У тебя неправильная аналогия, конструктивизм это наоборот, как если бы мы запретили иррациональные числа и скатились на уровень древних греков. Вайлдбергер собственно уже запретил.
Чего не охватывают такие подходы, они не пытаются охватить что-то содержательное и сохранить это, им в принципе плевать на содержание, святые принципы важнее. Хотя там есть способы. Например ну ты не любишь иррациональные числа, но pi или e тебе все равно нужны. https://en.wikipedia.org/wiki/Ring_of_periods
176 52475
>>52471

>осталось ровно тем же, чем и было: пропорцией


Пропорцией чего является элемент произвольной ассоциативной алгебры? Потому что это и есть то, к чему привело обобщение понятия числа.

>взятие корня - это операция, обратная возведению в степень


Чего? Взятие корня это и есть возведение в степень, буквально, просто степень с дробным показателем. Обратное к операции возведения в степень это логарифмирование.

>Казалось бы, зачем вводить лишние сущности


Зачем вводить какие-то произвольные ограничения на методы, доступные для решения нужной тебе задачи? Ну если из догматических соображений, что тебе лично не нравятся какие-то методы, например доказательства от противного или чисто экзистенциальные доказательства, и ты поэтому не хочешь ими пользоваться и предлагаешь другим отказаться тоже, то понятно, но это сектантская позиция, изначально.

>Речь о том, что некоторые задачи неразрешимы в той конкретной форме, в которой они сформулированы


Не, ну это ясно. Гипотеза континуума например невыводима из ZFC. Впрочем есть мнение что где-то 100% содержательных математических результатов, выводимы и верны в любой возможной аксиоматике, данное убеждение подтверждается на практике тем что проблемы оснований ни одного серьезного математика не интересовали уже лет 80 как.

>представления об отрицательных числах, нуле и уж тем более комплексных числах возникли позже


Комплексные числа ~1545, отрицательные числа ну смотря где, примерно IX век в Индии или III в Китае, в Европе же не раньше Фибоначчи, а скорее всего, того же Кардано. Но математика в средневековой Европе до Кардано это довольно чудовищное явление в принципе, легче сказать что её просто не было.

>Вопрос в том, как такие абсурдные задачи можно было бы распознавать заблаговременно


Да оно кажется проще, не иметь научруком какого-нибудь Лузина, который выдает тебе задачи вроде той же гипотезы континуума. А вообще, здравый смысл исследователя и всё такое. У Маклейна есть про это.
177 52478
>>52475

>Гипотеза континуума например невыводима из ZFC.


Это доказано, по существу, с применением теоретико-топосовых методов. Непротиворечивость которых под сомнением.

>ни одного серьезного математика


И тут такой ХОБАНА, ХОБАНА! Воеводский.
178 52479
>>52478
Это доказано методом форсинга. Позже оказалось, что форсинг имеет применение в теории топосов. Сама теория топосов не относится к core mathematics, при чём, даже; топосы изначально придумал Гротендик как основания для этальных когомологий, а сами этальные когомологии придумал чтобы доказать гипотезы Вейля. Аналогично, как выяснилось что этальные когомологии можно применить за пределами алгебраической геометрии (см. Сулливан Геометрическая топология), так же оказалось что можно ввести понятие элементарного топоса (топос пучков на пространстве с одной точкой эквивалентен категории множеств), которое не нуждается в топологии Гротендика, хотя современные деятели в этой области вроде как раз предлагают вернуться так сказать к истокам:
https://www.oliviacaramello.com/Unification/HDROliviaCaramello.pdf

>Воеводский


Воеводский доказал теорему об изоморфизме норменного вычета, за что получил премию Филдса. После этого результата математикой он больше не занимался. Сначала он избрал себе популяционную генетику, но не преуспел в ней, затем переключился на основания и придумал там ХоТТ. В последние годы он вообще говорил что математика больше не нужна и ей осталось лет 50 максимум.
Можно привести много примеров, Перельман после гипотезы геометризации тоже больше ничего не сделал кроме общения с журналистами, Николай Дуров после своей диссертации про геометрию Аракелова написал одну соцсеть и мессенджер. Не вижу какую мысль нужно извлечь из этих примеров.
179 52483
>>52479

>Это доказано методом форсинга.


Который не "имеет применение в теории топосов", а по существу теоретико-топосовый. Это как если бы ты увидел аналитическое доказательство того, что C алгебраически замкнуто, и сказал бы, что "основная теорема алгебры применима в матанализе". См. Peter T. Johnstone, Topos Theory и Sketches of an Elephant.
180 52484
>>52479

>топос пучков на пространстве с одной точкой


На антидискретном пространстве, мы же не маленькие и про локали в курсе.
181 52486
>>52483
Общеизвестно что "основная теорема алгебры" не имеет никакого отношения к алгебре

>ты увидел аналитическое доказательство того, что C алгебраически замкнуто


а что, есть хоть одно не аналитическое? Если это аналитический факт, в принципе, какое там еще может быть доказательство.

>Topos Theory и Sketches of an Elephant


Ок, не спорю, like I've said, it's not part of core mathematics. Насчёт непротиворечивости предложенной Гротендиком изначально конструкции, впрочем, никаких сомнений нет.
182 52489
>>52486

>а что, есть хоть одно не аналитическое?


http://www.jmilne.org/math/CourseNotes/FT.pdf#page61
183 52495
>>52486

>Если это аналитический факт


топологический же
184 52542
А что вы думаете о катгориях в хачкеле, есть ли они там и нужны ли? Спасибо.
185 52544
>>52542
Нет. Hask не является категорией. Поскольку в хаскеле нельзя определять новые категории, в хаскеле нет категорий.
187 53349
>>52479

>Не вижу какую мысль нужно извлечь из этих примеров.


Матан отжирает кучу сил и становится не интересным.
188 53367
>>53349
Да, это правда. Из великих на старости лет никто не проявляет былого интереса.
189 53369
>>50442 (OP)

>Курт Гёдель показал, что полной математики в принципе не может существовать.


>Вернее, что "в любой формальной системе существует утверждение, которое нельзя ни доказать, ни опровергнуть".


>Отсюда фразы о том, что математика - язык бога, что через неё можно познать мир - неверны.


>Гёдель фактически доказал, что мир не познаваем в полной мере с помощью формальных систем с конечным набором аксиом.


Не совсем так.
Во-первых, есть https://ru.wikipedia.org/wiki/Теорема_Гёделя_о_неполноте
Их там две, ты написал о первой. Но они обе - про формальные арифметики, а не про формальные системы вцелом.
Во-вторых, есть https://ru.wikipedia.org/wiki/Теорема_Гёделя_о_полноте
Там как-раз про истинность и доказуемость прочитай.
И сразу - пара вопросов:
Разве логика предикатов первого порядка не является формальной системой?
Разве логика предикатов первого порядка не имеет конечный набор аксиом?
В-третьих, ты пишешь о том, что

>в любой формальной системе существует утверждение, которое нельзя ни доказать, ни опровергнуть


Что же из этого следует? Или должно бы следовать? Что вся формальная система некорректна что-ли?
Смотри. Есть геометрия Евклида, например. В ней есть аксиома. Это пятый постулат.
Цитата, отсюда: https://ru.wikipedia.org/wiki/Евклидова_геометрия

>Если прямая, пересекающая две прямые,


>образует внутренние односторонние углы,


>меньшие двух прямых углов,


>то, продолженные неограниченно,


>эти две прямые встретятся с той стороны,


>где углы меньше двух прямых углов.


И есть, допустим, утверждение:

>C какой-либо конкретной стороны


>встретятся прямые,


>для которых внутренние углы пересекающей их прямой - ПРЯМЫЕ. Это параллельные прямые.


Да, это утверждение нельзя ни доказать ни опровергнуть.
Но это вовсе не значит, что вся геометрия перестаёт, внезапно, работать,
и уж тем более, что она поэтому - перестаёт существовать.

>>50673

>Из теоремы Гёделя (в более общей современной формулировке) вытекает лишь то,


>что не существует тьюринговый алгоритм, который выдаёт все истинные и только истинные высказывания.


>Но кто доказал, что в нашем мире невозможны сверхтьюринговые вычисления?


Сверхтьюринговые вычисления - связаны с "проблемой останова".
Тот же парадокс лжеца на одном лишь отрицании.
Лжец говорит, что он лжет.

Вопрос: Лжёт ли он?
TRUE: Если он лжец, то лжёт;
FALSE: Если он лжёт, что он лжёт, то он говорит правду.
TRUE: Правда про то, что он лжёт - значит ложь...
FALSE: Если он лжёт, что он лжёт, то он говорит правду.
TRUE: Правда про то, что он лжёт - значит ложь...
FALSE: Если он лжёт, что он лжёт, то он говорит правду.
...
И так - до бесконечности.

Эту шнягу, не то что тьюринговыми, но ИМХО, даже сверхтьюринговыми вычислениями не вычислить,
если ими не будет доказано, что последовательные вычисления - ВНЕЗАПНО, закольцовываются, или не застопорится.

Также, как и с попыткой проверить - где пересекутся ПАРАЛЛЕЛЬНЫЕ прямые.
Вдруг они пересекутся где-то в миллиардах гигапарсек, из-за какой-нибудь кривизны пространства.
189 53369
>>50442 (OP)

>Курт Гёдель показал, что полной математики в принципе не может существовать.


>Вернее, что "в любой формальной системе существует утверждение, которое нельзя ни доказать, ни опровергнуть".


>Отсюда фразы о том, что математика - язык бога, что через неё можно познать мир - неверны.


>Гёдель фактически доказал, что мир не познаваем в полной мере с помощью формальных систем с конечным набором аксиом.


Не совсем так.
Во-первых, есть https://ru.wikipedia.org/wiki/Теорема_Гёделя_о_неполноте
Их там две, ты написал о первой. Но они обе - про формальные арифметики, а не про формальные системы вцелом.
Во-вторых, есть https://ru.wikipedia.org/wiki/Теорема_Гёделя_о_полноте
Там как-раз про истинность и доказуемость прочитай.
И сразу - пара вопросов:
Разве логика предикатов первого порядка не является формальной системой?
Разве логика предикатов первого порядка не имеет конечный набор аксиом?
В-третьих, ты пишешь о том, что

>в любой формальной системе существует утверждение, которое нельзя ни доказать, ни опровергнуть


Что же из этого следует? Или должно бы следовать? Что вся формальная система некорректна что-ли?
Смотри. Есть геометрия Евклида, например. В ней есть аксиома. Это пятый постулат.
Цитата, отсюда: https://ru.wikipedia.org/wiki/Евклидова_геометрия

>Если прямая, пересекающая две прямые,


>образует внутренние односторонние углы,


>меньшие двух прямых углов,


>то, продолженные неограниченно,


>эти две прямые встретятся с той стороны,


>где углы меньше двух прямых углов.


И есть, допустим, утверждение:

>C какой-либо конкретной стороны


>встретятся прямые,


>для которых внутренние углы пересекающей их прямой - ПРЯМЫЕ. Это параллельные прямые.


Да, это утверждение нельзя ни доказать ни опровергнуть.
Но это вовсе не значит, что вся геометрия перестаёт, внезапно, работать,
и уж тем более, что она поэтому - перестаёт существовать.

>>50673

>Из теоремы Гёделя (в более общей современной формулировке) вытекает лишь то,


>что не существует тьюринговый алгоритм, который выдаёт все истинные и только истинные высказывания.


>Но кто доказал, что в нашем мире невозможны сверхтьюринговые вычисления?


Сверхтьюринговые вычисления - связаны с "проблемой останова".
Тот же парадокс лжеца на одном лишь отрицании.
Лжец говорит, что он лжет.

Вопрос: Лжёт ли он?
TRUE: Если он лжец, то лжёт;
FALSE: Если он лжёт, что он лжёт, то он говорит правду.
TRUE: Правда про то, что он лжёт - значит ложь...
FALSE: Если он лжёт, что он лжёт, то он говорит правду.
TRUE: Правда про то, что он лжёт - значит ложь...
FALSE: Если он лжёт, что он лжёт, то он говорит правду.
...
И так - до бесконечности.

Эту шнягу, не то что тьюринговыми, но ИМХО, даже сверхтьюринговыми вычислениями не вычислить,
если ими не будет доказано, что последовательные вычисления - ВНЕЗАПНО, закольцовываются, или не застопорится.

Также, как и с попыткой проверить - где пересекутся ПАРАЛЛЕЛЬНЫЕ прямые.
Вдруг они пересекутся где-то в миллиардах гигапарсек, из-за какой-нибудь кривизны пространства.
15551264073760.jpg44 Кб, 740x721
190 53437
>>50673

> Но кто доказал, что в нашем мире невозможны сверхтьюринговые вычисления?


А кто сказал, что возможны? Ты что ли?
191 53446
>>53367
Пикрелейтеды вот ебошили до конца своих дней
Хочу быть таким же, какие подводные?
192 53449
>>53446
Подводный камень в том, что хотелок тут мало.
193 53450
>>53446
В каких интересных одеждах раньше учёные ходили..
194 53451
>>53369

> Эту шнягу, не то что тьюринговыми, но ИМХО, даже сверхтьюринговыми вычислениями не вычислить,


Этот парадокс касается только двузначной логики, т.е исключённого третьего в конечном счёте. В той же нечёткой логике парадокса лжеца нет, там просто получается по 50% правды и пиздежа. Исключенное третье это вообще не математический принцип, от его использования в математике одна хуйня и парадоксы на ровном месте.
195 53456
>>53451
Нечеткая логика в физике применяется (в Копенгагенской интерпретации, в many worlds коллапса волновой функции не происходит и соответственно вероятность не имеет смысла вообще); но в математике у неё применений нет.
196 53458
>>53456

>в many worlds коллапса волновой функции не происходит и соответственно вероятность не имеет смысла вообще


Ну да, ну да. Правило Борна-то всё равно нужно костылить, никуда от него не деться независимо от интерпретации.
197 53462
>>53456

> в математике у неё применений нет.


В гамалогиях что ли? Я уверен, что её можно применить в основаниях вместо каличной бинарной логики. Этого точно никто не пробовал. Наверное даже лучше сразу брать конструктивную нечеткую логику Атанасова вместо оригинальной Заде.
198 53463
>>53462
Основания математики относятся к математике так же, как метафизика к физике. Или философия науки к науке. Никак то есть.

>Этого точно никто не пробовал


Не сомневаюсь, в области оснований за всё время её существования трудились от силы 3 человека.
199 53466
Как называется обобщение понятия алгоритма на счётное количество шагов, несчётное количество шагов, и на случай, когда множество шагов не является фундированным?
200 53468
>>53466
Очевидные определения по рекурсии. Трансфинитная рекурсия и, вообще говоря, нётерова рекурсия. Обобщений нётеровой рекурсии ещё не придумано.
201 53469
>>53466
Потенциальная бесконечность
202 53471
>>53463

> Основания математики относятся к математике так же, как метафизика к физике.


Ну раз Панин или Манин, кто бы они ни были, так сказал, наверное так и есть.
203 53473
>>53468
Вот да, трансфинитная рекурсия, но мне что-то казалось, что это не то немного, думал есть её алгоритмический аналог какой-то, ну а хотя да, он и не нужен, наверное. Спасибо
204 53526
>>53466
Существуют разные обобщения понятия вычислимости на бесконечные множества. Среди относительно популярных: альфа-рекурсия, E-рекурсия и машины Тьюринга с трансфинитным временем.
Идея альфа рекурсии примерно такая. Вычислимые функции из N в N это в точности те функции график которых определяется Σ₁ формулой. И если вместо N рассматривать другие структуры, в определенном смысле похожие на N, то Σ₁-определимые функции там должны быть обобщениями вычислимости. Как правило в качестве таких структур используют уровни конструктивной иерархии L_α для допустимых ординалов α.
E-рекурсия говорит о вычислительных процессах манипулирующих с произвольными множествами. Название машин Тьюринга с бесконечным временем объясняет само себя.
205 54621
>>53526
Спасибо.
206 54631
>>50442 (OP)

> Основания математики относятся к математике так же, как метафизика к физике



Не пизди. Основания это фреймворк, потреблядское отношение только у прикладников.
207 54633
Мужики, так как натуральное число определить-то?
15583504264960.jpg86 Кб, 604x584
208 54643
>>54633
О, N-петуха из дурки выписали. Неожиданно. Года 2 лечился, все забыл? На выбор: нумералы Чёрча, ординалы фон Неймана, ординалы Брауэра.
209 54644
>>54643

Ты я смотрю так и не нашел определение за 3 года? Ни что из перечисленной тобой хуйни не является определением. Усёк?
210 54646
>>54631
Фреймворк это гомологическая алгебра, пучки, теория категорий. Если у тебя ZFC это фреймворк, то ты не математик, а петух. Иди гипотезу континуума докажи или чем вы там, долбоебы, занимаетесь.
211 54647
>>54646

> Фреймворк это гомологическая алгебра, пучки, теория категорий



С точки зрения малолетнего долбоёба - безусловно.
212 54648
>>54644

> Ни что из перечисленной тобой хуйни не является определением. Усёк?


Почему?
213 54649
>>54648

Апдейт, это фреймворк но более высокого уровня. Типа как WPF поверх чистого .net
214 54650
>>54644

> Ни что из перечисленной тобой хуйни не является определением


Если бы ты не был ебланом, ты бы догадался упомянуть ABC-гипотезу и сказал бы, что ни одно из существующих определений N не позволяет вывести свойства умножения из свойств сложения даже в простейшем случае, и чтобы это сделать, нужно рассматривать сложение и умножение в разных театрах Ходжа, а их свойства связывать через всякую эталь тета хуергу. Вот это действительно хуй знает почему так.
215 54668
>>54650

Ты выообще не в теме, ничего из того что ты перечислил не имеет ни малейшего отношения к определению натурального числа (подозреваю ты тупое школоло нахватавшееся модных терминов а сам понятия не имеешь о чём они).

На самом деле определние N дать невозможно так как не умея оперировать счетными множествами на метаязыке ты не сможешь корректно определить N в объектном языке.
216 54688
>>54668
Ты ж сказочный долбаеб. Никакого "определения" N вне его построения быть не может, во всех этих метаязыках ты просто запутаешься, потому что определения на метаязыке сами требуют определения и так до бесконечности.
217 54695
>>54668
Школотрон ебучий, подумай почему в нормальной (конструктивной) математике не используется никаких определений, внешних по отношению к самой теории (лямбда исчисления, например), никаких метаязыков и прочей бесполезной хуерги. Только то, что выразимо на языке самой теории.
218 54700
Зачем определять N?
219 54701
>>54688

Ну так хули ты тогда пиздел про ABC, пеано и прочую хрень якобы они являются определениями? Ась???

>>54695

Используется, например марков на первой странице учит рисовать палочки на бумаге.
220 54702
>>54695

>никаких метаязыков и прочей бесполезной хуерги.


никаких машин тьюринга там или поста все реальное)))
221 54703
>>54701

> Ну так хули ты тогда пиздел про ABC, пеано и прочую хрень якобы они являются определениями? Ась???


Ты ещё раз перечитай, что там написано. Хотя, думаю смысла нет, мозги у тебя все равно не отрастут.

> Используется, например марков на первой странице учит рисовать палочки на бумаге.


Опять же, ты даже не понимаешь о чем речь, не понял приведенного примера. Думаешь, если начитался какой-то хуйни, умным стал?
222 54705
>>54703

> Ты ещё раз перечитай, что там написано. Хотя, думаю смысла нет, мозги у тебя все равно не отрастут.



Ты пытался подменить дискурс первичного определения N какой-то экзотикой, ну и кто из нас мудак?

> Опять же, ты даже не понимаешь о чем речь, не понял приведенного примера.



Тогда пусть подробнее расписывает что имел ввиду или примера там никакого нет. Ткни в любую конструктивисткую книжку с последовательным изложением материала, получишь вначале метаязыковое описание конструктивисткого языка.
223 54707
>>54705

> Ты пытался подменить дискурс первичного определения N какой-то экзотикой, ну и кто из нас мудак?


Мань, я тебе привёл пример в какую сторону доказывать, что все определения N это не определения. Ты даже этого не понял.

> Ткни в любую конструктивисткую книжку с последовательным изложением материала, получишь вначале метаязыковое описание конструктивисткого языка.


Для общего неформального описания происходящего. Которое нужно только для введения в предмет и общих пояснений, а в самих теориях (собственно, построениях и вычислениях) не используется. Барендрегт тот же, lambda calculus with types. Там есть примеры того, как метаязыковые определения операции отбрасываются использованием нотации самой теории.
224 54712
>>54650

>ни одно из существующих определений N


>не позволяет вывести свойства умножения


>из свойств сложения даже в простейшем случае


Если умножение - это многократное сложение,
то почему нельзя вывести свойства умножения
из свойств операции сложения, и свойств операции повтора этого сложения?
Ведь чтобы умножить a на b - нужно просто повторять сложение a к результату - b раз?

Мне кажется можно как-то ещё быстрее и проще реализовать умножение,
например, умножение Карацубы, или вот это:
https://studfiles.net/preview/4258611/page:10/
По сути, здесь просто повтор фиксированных правил,
но через них уже реализовано умножение в унарной системе счисления.
Так вот, разве ИЗ СВОЙСТВ этих правил нельзя вывести свойства умножения.

А ещё вот эту статью разберите: https://habr.com/ru/post/451860/
Там какое-то алго для умножения придумали, невъебенное. Я не могу вникнуть туда, но pdf-ку скачал.
Гляньте на этот алго через призму этих ваших теорем.
homepage526178a-i1.0.jpg1,7 Мб, 2715x2748
226 54714
>>54712

> Если умножение - это многократное сложение,


> то почему нельзя вывести свойства умножения


> из свойств операции сложения, и свойств операции повтора этого сложения?


> Ведь чтобы умножить a на b - нужно просто повторять сложение a к результату - b раз?


Казалось бы, все так, т.е просто как 3 копейки. А на деле есть ABC-conjecture, неразрешимая вот таким образом. Повторяется ситуация с теоремой Ферма, которую местами доказали относительно недавно. Более 300 лет изьебств впустую. Очень похоже, что её так же доказать в полной мере можно только в IUTeich, в разных театрах Ходжа.
227 54716
>>54714
Колупни суть того быстрого алго для умножения, и главное - как к нему пришли.
Может быть через какие-то магические квадраты, сможете чё-нибудь формализовать и таки доказать.
Подозреваю, что умножение намного проще и короче можно выразить как-то, пытаясь его определить,
и не важно, что эта операция будет не очень быстрой с точки зрения эффективности,
но сама структура её, и конструкция - может открыть много чего интересного.
Главное понять КАК к этому приходили математики, и там вокруг ещё глянуть что оно всё это значит,
можно ли это оптимизировать, и главное будет ли это всё - конвертируемо в логику предикатов первого порядка,
и верифицируемо ли всё это - посредством формальной верификации.
228 54718
>>54716
Это все численные методы же. Это в матанализе просто значок интеграла нарисовал и доволен. А по факту вычисление нужно, и методов есть немало, что как бы намекает нам, что идеального нет. Тут похожая ситуация. Формализация численных методов в общем привела бы к увеличению скорости умножения больших чисел. Но результат-то будет тот же. 100500100500100500 в итоге даст одно значение, как его ни считай.
229 54749
>>54718
А мне кажется, что при определении операции умножения, через другие операции,
и выводе самих свойств этой операции умножения из свойств всех этих операций,
основной вопрос, на который нужно ответить - это КАК ИМЕННО её проводить,
то есть КАК ПРАВИЛЬНЕЕ эту операцию проводить, чтобы её полностью ОПРЕДЕЛИТЬ её,
не задействуя сложные механизмы, и теории.
То есть найти - такое фундаментальное и основополагающее определение,
которого было бы достаточно для умножения - на том же множестве N,
а не всякие неведомые производные от этого определения,
к которым оно же-таки, по мере расширения функциональности множества - изоморфно сводится.
230 54750
>>54749
В таком случае, было бы целесообразно рассмотреть свойства тех же групп чисел,
по которым производится разбиение в алгоритме Карацубы,
и не прост рассмотреть, а рассчитать их гомологии.
231 54751
>>54750
Там вроде недавно нашли алгоритм умножения, работающий за нлогн.
232 54752
>>54751
Типа на некоторых компах умножение получается быстрее сложения, лол, и в перспективе сложение будет через умножение вычисляться.
234 54757
>>54751
>>54752
>>54754
Я уже вкинул ссылку на хабр, там PDF-ка.
>>54712

>https://habr.com/ru/post/451860/

235 54758
>>54757
Долблюсь в шары, лол.
236 54762
>>54757

Это прикладнина. Она не имеет ни малейшего отношения к основаниям математики.
237 54765
>>54713

Это кодировки, а не определения. Что бы их сформулировать метаязык уже должен уметь оперировать счётными наборами объектов, а если ты умеешь это делать можно сразу "определить" N через конструкции с "и т.д." и даже множества тебе не понадобятся.

>>54707

> Мань, я тебе привёл пример в какую сторону доказывать, что все определения N это не определения. Ты даже этого не понял.



Вообще-то операции определяются после операндов, если мы операнды не определили, как ты можешь вообще рассуждать про проблематику определения операции, лол? Сам-то понял что сказал?

> Для общего неформального описания происходящего.



Ты походу о чём-то своём кукарекаешь. Вообще-то метаязык в конечном счёте это всегда неформальное математическое арго как любит говорит Манин.
238 54769
>>54765
А, так ты и есть тот же дебилок, который на гамалогии, сойбоя Вербицкого, Панина или манина дрочит. Оснований нет, математика подвешена в воздухе и прочая такая щиза. Ну это многое объясняет, два таких клоуна - пучкнутый и N петух это многовато.
239 54772
>>54765

>Вообще-то операции определяются после операндов, если мы операнды не определили,


>как ты можешь вообще рассуждать про проблематику определения операции, лол?


>Сам-то понял что сказал?


Ещё скажи что все SHA512-хэши и ключи RSA-8192
рассчитываются прежде
чем варганятся сами алго для их рассчёта.

Вот тут: https://ru.wikipedia.org/wiki/Натуральное_число#Аксиомы_Пеано_для_натуральных_чисел
Вторая аксиома, как-бы намекает на предварительное - определение операции следования.
И если многократно лишь её повторять - то получишь N вплоть до алеф-нуль.
240 54780
>>54769

>гамалогии, сойбоя Вербицкого, Панина или манина


Пора и тебе имя придумать, проткнутый.
15585018655410.jpg959 Кб, 1688x1688
241 54781
>>54780
Охлол, таки угадал. Ебать ты жалкий клован. Вот смотри, ты тут
>>54765

> метаязык в конечном счёте это всегда неформальное математическое арго как любит говорит Манин.


Ты соглашаешься, что метаязык в математике в целом дело не первой важности. Чуть выше >>54707 я привёл пример теорий, в которых метаязык не используется, но в которых возможно определить N (нумералы Чёрча). Т.е определения отличные от построения, например на метаязыке, если и есть, то в самой теории ненужны. И к чему тогда вся твоя многолетняя клоунада про определение N? Ты ж шизик, лол.
242 54782
>>54781

Какое же ты шизло, твой пример говно и вообще не в тему. Ни одна теория не существует без метатеории, иначе ты тупо не можешь обговорить о правилах и средствах вывода в этой теории.
243 54783
>>54782

> Ни одна теория не существует без метатеории,


Мань, в таком случае теорий как таковых вообще существовать не может, т.к для любой метатеории нужна метаметатеория итд до бесконечности. И определения нет вообще ни у чего. Ты ж дебил, лол.
244 54785
Тезис Чёрча для оснований: все основания эквивалентны ZFC или слабее.
245 54794
>>54785
И тут из сумрака вышли Бурбаки со своим тау-символом.
246 54799
>>54783

Неопределяемые понятия? Не, не слышали.
247 54800
>>54799

> Неопределяемые понятия? Не, не слышали.


Ты не понял. С таким подходом определяемых понятий вообще существовать не может. Потому что у определения должно быть определение. И так до бесконечности.
248 54801
>>54800

Это ты не понял. Когда говорят о неопределяемых понятиях как раз имеют ввиду, что нужно выделить набор неопределяемых понятий и явно объявить их таковыми а не мухлевать с переформулировками того же самого на метаязыке.
249 54802
>>54801

> Когда говорят о неопределяемых понятиях как раз имеют ввиду, что нужно выделить набор неопределяемых понятий и явно объявить их таковыми


PN, "primitive notion" в automath'е де Брауна так помечаются строки, где просто вводится некий объект без его определения выше. Естественно, смысл этого только в упрощении доказательства, то что можно объявить примитивным объектом в одной теореме, может быть доказательством в другой. Ты же походу уверовал в какие-то абсолютно неопределяемые сущности в виде гномика. Какой смысл в такой религии, непонятно.
250 54805
>>54801

> не мухлевать с переформулировками того же самого на метаязыке.


Ну и ты видишь метаязык там, где его нет, либо где он есть для пояснений и общего развития, но самой системой не используется. Например, нумералы Чёрча. Это прямое построение, хотя, разумеется, выразимое на метаязыке. Который однако же не используется в собственно вычислениях. Т.е у тебя ещё и проблемы с пониманием, где язык, а где метаязык.
251 54832
>>54805
Но ламбада-калкулус определяется с использованием бесконечного множества переменных (x, x', x'', ...) - суть те же натуральные числа. Вот если бы взять SKI комбинаторы за основу. Но может и там есть свои подводные, хз.
252 54844
Блядь вы всё про эту хуйню уже который год спорите. Вы что, ебнутые?
253 54846
254 54849
>>54844
Боюсь, про эту хуйню они спорят уже тыщи три лет.
Почему порядок арифметических операций такой? 255 55841
Не нашел в инете внятного объяснения. Вариант-так договорились - не канает, ведь могли договорится и по другому, это тоже математика?

Моя версия - рассматривать умножение и деление чисел, как единую сущность, множество (одно число, разбитое на процессы).

То есть 2+3 5 это 2+ множество 3 5, нельзя отодрать 3 от множества и сложить ее с немножеством "2", а потом умножить на 5. При операциях вычитания и сложения мы можем представить течение времени - последовательно, друг за другом выполняем операции с ОДИНАКОВЫМИ сущностями. При операциях деления и умножения мы имеем, по сути, одну сущность, которую, чтобы сложить или вычесть, сначала нужно привести к ОДИНАКОВОСТИ одного числа. Как то так.
Просвещайте.
256 55851
Сущности? Это обосс/sci/ опять протёк?
>>55841

>Вариант-так договорились - не канает


На этом "просвещение" можно заканчивать.
Ты можешь определять всё как тебе захочется коль скоро твоя система непротиворечива и даёт какие-то новые интересные результаты.
257 55853
>>55841

Ты сначала натуральное число определи, а потом уже с операциями разбирайся.
23213213213132.png54 Кб, 702x298
258 55872
>>50442 (OP)
Извинись!
259 55877
>>55853

> Ты сначала натуральное число определи, а потом уже с операциями разбирайся.


N-петух, тебе ж пояснили, что с твоим маняподходом получается, что понятие определения принципиально невозможно, так как в любом случае требует бесконечное количество метаязыков.
260 55885
>>55877

>бесконечное количество метаязыков.


эта мысль не нова
261 55886
>>55885

> эта мысль не нова


Не нова, конечно. Странно считать, что N-петух может сказать что-то новое в математике. Просто наступил на очередные грабли, на что я и указал.
262 55931
>>55877

Лол, операционный петух закукарекал. А ничего, что это я утверждал насчёт невозможности определения N? Маняподход у вас, так как он отличается от строгого и общепринятого определения математических понятий, это вы должны пояснять про свои мнимые определения N.
263 56023
>>55931
Ты пойми уже, что никакие определения не нужны. Нужно построение. Правила этого построения работают без метаязыков и сами являются определением. Вот и все. А весь аутизм с "определениями" в бесконечных метаязыках никакого отношения к объекту определения не имеет и для работы с ним не нужен. Поэтому, ординалы Брауэра, фон Неймана, нумералы Черча итд это непосредственное определение N. Работающее без метаопределений.
264 56034
>>56023
Назови хоть одну книгу, где вместо математических определений идут математические построения
265 56035
>>56034
Любая вообще. Объяснения на метаязыках нужны чисто для удобства пользователя и не являются неотъемлемой частью самой математической нотации. У тех же бурбаков об этом на каждом шагу говорится прямым текстом.
266 56036
У Брауэра вообще очень четкое разделение математики на построения, языки и метаязыки, если бы ты умных людей читал, а не кашу свою в голове созерцал все эти годы, может бы и понял чего.
267 56044
>>56036

Это ты кому адресовал?
268 56243
>>56239
Этот пидор еще и теорему скоммуниздил про ежа.
269 56248
>>56239
Манямир двачного дурика, лол. Брауэр прямым текстом писал почему формализм не подходит для оснований, когда Геделю 1 год был, про неразрешимость того, что Гильберт назвал Entscheidungsproblem за 20 лет до того как Гильберт сформулировал эту проблему и за 30 лет до того, как Тьюринг доказал ее неразрешимость. То, что до кого-то это дошло на 30 лет позже, чем до Брауэра, это уж точно не проблема Брауэра. Мозги дело такое, если уж нет, то не купишь.
270 56249
>>56248

Так почему он не доходит до оснований?
271 56251
>>56249

> Так почему он не доходит до оснований?


Почему формализм не подходит? Потому что любая сколько-нибудь подходящая для оснований аксиоматика либо неполна либо противоречива. На этом и Гильберт обосрался, и чуть позже - бурбаки. А системы, соответствующие теореме Гёделя о полноте, для оснований недостаточны.
272 56256
>>56248

>Брауэр прямым текстом писал почему формализм не подходит для оснований, когда Геделю 1 год был, про неразрешимость того, что Гильберт назвал Entscheidungsproblem за 20 лет до того как Гильберт сформулировал эту проблему и за 30 лет до того, как Тьюринг доказал ее неразрешимость


Но никто не заметил петуха, увы, не того масштаба личность, как Гильберт или Гедель.
273 56258
>>56256

> Но никто не заметил петуха,


Тебя что ли? Или семью твою?
274 56264
>>56258
Бравера твоего, пиздившего теоремы. Он хоть что-то в жизни своей доказала, у него есть оригинальные математические результаты?
275 56266
>>56264
Ты ебнутый или да?
276 56267
>>56266
Ты ебнутый. Неси оригинальные результаты или будешь нахуй послан со своим феласафом.
277 56268
>>56267

> или будешь нахуй послан со своим феласафом.


Мнение зумер-кринж дегенерата очень важно для меня.
278 56280
>>56268
смотри не пересамообразуйся там, а то помрешь как бравер в безвестности
279 56281
>>56280

Уж лучше так чем в дурке как Кантор.
280 56460
Объясните, пожалуйста, зачем сейчас преподают аристотелевскую логику и как от неё перешли к математической, какие связи между этими логиками, а также почему существует так много логик с разными основаниями, а не выводятся они вроде из одного.

Нашёл пока только такое, хоть и не понимаю:
Первым серьёзным критиком Аристотелевской логики был Пьер Рамэ, погибший во время Варфоломеевой ночи. Во второй части его «Диалектики» говорится о силлогизме; учение его о силлогизме, однако, существенных отступлений от Аристотеля не представляет. Начиная с Бэкона и Декарта философия идёт по новым путям и отстаивает методы исследования: непригодность силлогистического метода в смысле метода получения нового знания становится всё более и более очевидной.
Тем не менее, решение силлогизмов составляет важнейшую часть любого учебника по традиционной логике.[2] Несмотря на то, что использование силлогизмов само по себе не даёт новое знание, использование правил построения силлогизмов позволяет избежать логических ошибок, софизмов, в рамках имеющегося знания (см. Демагогия).
281 56461
>>56460
Силлогизм преобладал в логике до XIX века и имел ограниченное приложение в частности из-за привязки к категорическому силлогизму. Заменой силлогизму служит более простая и мощная логика первого порядка, а также теория кванторов.
282 56518
>>56460

>зачем сейчас преподают аристотелевскую логику


Этим занимаются люди с факультетов философии, а они в целом любят преподавать всякую давно устаревшую муть. Ладно уж аристотелевскую логику, они ведь и о философии Гегеле любят поговорить.

>и как от неё перешли к математической


Просвещайся:
https://plato.stanford.edu/entries/logic-firstorder-emergence/

>а также почему существует так много логик с разными основаниями, а не выводятся они вроде из одного.


В современной логике люди формулируют разные логические системы исходя из разных мотиваций. Мотивации могут быть сильно разные: в одних случаях система отражает более правильный, в глазах своего создателя, метод рассуждений, в других случаях речь может идти об изоляции алгоритмически разрешимых, но в тоже время достаточно выразительных, фрагментов существующей системы, который сами по себе неразрешимы.
283 56520
>>56518

>Этим занимаются люди с факультетов философии, а они в целом любят преподавать всякую давно устаревшую муть. Ладно уж аристотелевскую логику, они ведь и о философии Гегеле любят поговорить.


Ну, если бы это честно подавалось как история философии, то ничего особенно страшного, на мой взгляд, нет. Другое дело, что часто (особенно в Раиссе) преподают совершенную кашу и студенты не понимают, например, актуальны ли сейчас идеи Гегеля.

Аристотеля ставить в один ряд с Гегелем я бы не стал, потому что считаю, что чтение классических греков (именно чтение, а не идиотская зубрёжка и экзамены) были бы полезны в подростковом возрасте. Гегель же никакой ценности, кроме исторической, не представляет.
284 56521
>>56520
А чем они собственно полезны? Я читал множество всего в подростковом возрасте, в том числе и греков. Пользу не ощущаю
285 56522
>>56460

> Объясните, пожалуйста, зачем сейчас преподают аристотелевскую логику и как от неё перешли к математической



Никто не преподаёт (разьве что у гумусов облегчённый курс какой нибудь, так как матлог они не осилят). Аристотелевская логика это древнее гамно, к современному матлогу относится примерно как планиметрия древних греков к современным же разделам геометрии.
286 56529
>>56520

>Аристотеля ставить в один ряд с Гегелем я бы не стал, потому что считаю, что чтение классических греков (именно чтение, а не идиотская зубрёжка и экзамены) были бы полезны в подростковом возрасте. Гегель же никакой ценности, кроме исторической, не представляет.


Ну так я и оценил Аристотеля позитивнее Гегеля. Аристотель на мой взгляд все-таки был важным с исторической точки зрения мыслителем, который, конечно, продвинул человеческую мысль в свое время. Гегель же, на мой взгляд, просто нес муть с самого начала.
287 56913
Как примерить конструктивную логику в обычной жизни?
288 56915
>>56913

Можно попробовать дать определение N
289 56916
>>56913
Прогать.
290 56938
>>50442 (OP)

> "в любой формальной системе существует утверждение, которое нельзя ни доказать, ни опровергнуть"


В логике высказываний/предикатов таких утверждений нет, прикинь?
291 56939
>>56938
У него Гёдель головного мозга, забудь.
292 56959
>>50442 (OP)
Ты конченый дебил. Ты серьёзно решил, что истинность суждений зависит от субъекта?
Рамуджан лишь в очередной раз показал, что интуиция и здравый смысл -- хуйня ебаная, и что понятие бесконечности вообще штука тяжёлая. Если бы то, что ты сказал, было правдой, это значило бы противоречивость математики, а значит, её бессмысленность. Об этом, кстати, формальные системы. И ты понятие полноты вообще не понимаешь. И суёшь не туда. Пиздец, да ты дебил.
Гёдель говорил лишь про конкретные формальные системы, а не про все. Кроме того, формальные системы -- лишь способ представления математики, а не математика, и всё, что он доказал -- что этот способ хуёвый. Кроме того, его теорема не работает для формальных систем с хотя бы счётным количеством аксиом.

>дилетанство


>хобби


Чел, прочитать википедию про математиков, или посмотреть фильм на дискавери, это не хобби, и ты далеко даже не дилетант. Ты очередной клоун, решивший, что математика -- это просто.

>считаю


Всем поебать на твоё мнение и оно неверное.
Гаусс общепринято лучший математик истории. Кроме того, результаты Гёделя узкие, хоть и значительные, и его творчество в силу его сумасшествия оборвалось, он не слишком много сделал. Тот же Тарский заслуживает больше. Гротендик.
294 56981
>>56959

>Гаусс общепринято лучший математик истории.


Эйлер
295 56992
>>56981

>Эйлер


Всегда интересовало - он когда по-русски разговаривал, то представлялся как Ойлэ или сам коверкал до Эйлера?
296 56993
>>56992
Ойлэ Лукойэ
297 57078
>>56993
Лукойлэ
298 57096
Есть ли какая-то пропедевтика по отношению к математике, философское введение или какое-то другое
299 57097
>>57096
Или не нужно? Но как я смогу тогда доказывать теоремы и знать, что им можно верить?
300 57100
>>57097
Опыт, большое количество примеров. Хочешь научиться плавать, плавай. Хочешь научиться доказывать, ну здесь аналогично. Не получается доказать самому, разбирай чужие доказательства. Пробуй рассказывать аргументы кому-то. Пытайся записать их. Честное рассуждение отличить от не совсем честного в принципе можно.
301 57176
Можно ли сказать, что логика изучает качество, а математика количество?
302 57177
>>57176
Можешь что угодно писать и говорить, но лучше не на этой доске.
303 57203
>>57096

> Есть ли какая-то пропедевтика по отношению к математике, философское введение или какое-то другое


Основания.
Кооооококо ниматиматика, матиматика только пучки, гамалогии и тапалогии, так сойбой вербитский скозал!!11
304 57208
>>57203
Кооооококо матиматика, матиматика не только пучки, гамалогии и тапалогии, так сойбой мартин лёф скозал!!11
305 57210
>>57203
А для оснований не нужно ли изучать историю вопроса, какие проблемы были, как всё это развивалось, историю математики вообще? Что нужно знать, чтобы начать изучать основания? Разве с них можно начать изучение математики на текущем этапе всей этой темы?

Слышал правда, что какой-то гений-математик всё изучил по какой-то книге с истории математики и энтому Principia Mathematica, но подозреваю себя слегка туповатым для такого пути.
306 57217
>>57203
>>57208
Вы про высшую математику?
307 57219
>>57203
Не математика.
308 57230
>>57219
Странно вроде в высшей математике изучают множества и алгоритмы...
309 57239
>>57219

C точки зрения малолетнего долбоёба - безусловно.
310 57242
>>57210

> Слышал правда, что какой-то гений-математик всё изучил по какой-то книге с истории математики и энтому Principia Mathematica, но подозреваю себя слегка туповатым для такого пути.


Ну это и есть путь просветлённого, лол. Если никак, остаётся путь слесаря - задрачивай конкретные области, как тут советуют >>57100 здесь главное не лезть за пределы задроченного и не пытаться понять, как все работает, ато вон выше цитировали какого-то сказочного свидетеля гамалогий, который заявлял, что математика висит в воздухе и никаких оснований не имеет.
311 57243
>>57210

Principia mathematica провалилась же, кроме исторического никакого интереса не представляет, не стоит тратить на неё время
312 57244
>>57243

> Principia mathematica провалилась же, кроме исторического никакого интереса не представляет


Так и весь формализм как подход тоже провалился, после попыток Гильберта и теоремы о неполноте Гёделя для математики он не представляет интереса кроме исторического. По-сути кроме конструктивизма вообще все остальные подходы к основаниям либо провалились, либо просто не изучались достаточно для того, чтобы сказать, провалились они или нет.
313 57252
>>57244

Нет, он по другой причине провалился, у рассела даже обычне парадоксы воспроизводились.
314 57253
А кризис оснований предотвращён?
315 57254
>>57253

Нет, просто смирились
316 57255
>>57244
Где взять учебники по математике одобренные министерством конструктивизма?
317 57256
>>57242
А ты какой путь выбрал?
318 57258
>>57242

Нука, дай нам основания математики. Особенно интересует оснвоание натурального числа.
319 57259
>>57256

Путь гэй шлюхи.
320 57260
>>57254
С победой конструктивизма?
321 57261
>>57260
Да.
>>57258
Основание - перекладывать палочки. Алгорифмы Маркова. Модель Спик Грам Миколова. Тезис Маннури. Автомат Де Брауна. Изоморфизм Чёрча-Тюринга.
>>57255
В Стокогольском университете на кафедре оснований в кабинете Мартина-Лёфа.
322 57272
>>57261

> Основание - перекладывать палочки.



Что значит перекладывать палочки? Сколлько палочек у меня есть? Это всё эквивалентные понятий поэтому основанием не является.
323 57278
>>57272
Палочки это физическая реализация концепции потенциальной бесконечности, которая трансцендентальна и следовательно дана нам a priori в отличие от скажем трансцендентной актупальной бесконечности, которая просто вернуство. Читай Мартин-Лёфа, Критику интуиционистского разума.
324 57279
>>57278

Т.е. ты обычный верун, который уверовал в потенциальную бесконечность, с какого-то перепоя отверг актуальную и кукарекаешь тут про обоснование? Ну так нихуя ты не дал обоснование, ты всего лишь уверовал в N как исходное неопределяемое понятие
325 57281
>>57279
Все положения конструктивизма, включая потенциальную бесконечность истинны, потому что вычислимы. Актуальная бесконечность, гамалогии и тапалогии это просто бессмысленные значки, то есть они тоже тривиально вычислимы как простейшие манипуляции символами в рамках логики предикатов, равно как и Аллах и вообще что угодно, то есть это не математика даже. Интуиционистская теория типов, с другой стороны, реализована и проверена в Автомате Де Брауна, в этом вся разница.
326 57283
>>57278
>>57281
>>57261
Брависсимо!
327 57285
test
328 57292
>>57261

>Да.


Тогда почему сойбои не возятся с тапалогиями и не начинают переделывать математику на конструктивных основаниях?
329 57299
>>57281

>истинны, потому что вычислимы.


Истинно верую, говорю вам братцы!

>>57292
вот тут, например.
https://ncatlab.org/nlab/show/HomePage
330 57401
>>57281

Т.е. что бы "обосновать" потенциальную бесконечность вы уверовали в ещё более неведомую хуету под названием вычислимость?
331 57407
>>57401
Сейчас поле исследования теории вычислимости расширилось — появляются новые определения понятия вычислимости и идёт слияние с математической логикой, где вместо вычислимости и невычислимости идёт речь о доказуемости и недоказуемости (выводимости и невыводимости) утверждений в рамках каких-либо теорий.
332 57413
>>57401

> Т.е. что бы "обосновать" потенциальную бесконечность


Не устаю поражаться твоему дебилизму, серьезно.
333 57419
>>57413

Ты кто?
334 57421
>>57413
А мы твоему, "палочник". Принимаешь на веру тезис черча и не можешь доказать тривиальные математические факты, при этом считаешь это будущим математики.
335 57424
>>57421
Тебе от математики вообще что нужно с таким уровнем понимания вопроса? Что ты несёшь вообще, ты сам свои посты читаешь хоть? Какая "вера в тезис Черча", ты хоть почитай что такое этот тезис. А потом попытайся подумать, причем тут вера вообще.
336 57454
>>57424
Тезис Церкви - вычислимые функции суть машины Тьюринга. Этому тезису можно противопоставить другой: вычислимые функции суть индуктивные машины Тьюринга.
337 57486
Посоветуйте книгу для начального чтения по философии математики
338 57490
>>57486
Френкель, Бар-Хиллел. Основания теории множеств.
Бурбаки. Очерки по истории математики.
Прасолов. История математики.
339 57510
>>57490

> Френкель, Бар-Хиллел. Основания теории множеств.


Вот это удвою. Написано очень профессионально, Френкель тот самый, который один из авторов аксиоматики Цермело-Френкеля. Алсо, в переводном варианте этой книжки единственное внятное на русском языке изложение интуиционизма без хуеты и пиздежа. Автор не придерживается этого подхода, но точно понимает что это и о чем, в отличие всяких чумаходов-псевдоматематиков типа, ну не будем пальцем показывать.
340 57555
>>57510

В этой книжке основания плохо разобраны, не понравилась.
341 57645
Выучил я все эти абстракции
342 57685
>>57645
Ну и как, что понял?
343 57693
>>57685
Рисуем палочки, связываем пучком
15651539737980[1].jpg16 Кб, 302x134
344 57699
345 58257

> Этот вопрос является частью тысячелетней дискуссии "платоновский реализм vs коснтруктивистский номинализм", лучше не трогать данную тему.


Поподробнее?
346 58269
>>58257

>Поподробнее?


Перечитай последние шесть тредов на ОСНОВАНИЯМ МАТЕМАТИКИ
https://2ch.hk/math/res/40955.html (М)
Подробнее некуда. Кратко - >>57693
Shinichi+Mochizuki.jpg946 Кб, 2500x2500
347 58270
Нет уже никакой тысячелетней дискуссии. Вся вообще возможная математика выразима в унивалентных основаниях, главная открытая проблема HoTT - конструктивность аксиомы унивалентности Воеводского, закрыта Мортбергом (cubicaltt, в которой это не аксиома, а доказуемая теорема). Все, дискутировать больше не о чем, вся математика конструктивна, Брауэр был прав, его противники надристали себе за шиворот и в карманы, теперь официально. Остались чисто технические вопросы, например, изложить какую-нибудь мочидзукину IUTeich в HoTT сложновато, но кое-какие идеи имеются.
348 58271
>>58270

>Вся вообще возможная математика выразима в унивалентных основаниях


Те есть швитые гамалогии не математика. Интересно в какой раздел тогда таполагов гнать. В /sci? В /ph? А может быть в /re?
349 58273
>>58270
Так а что почитать нормальному человеку для вката в конструктивизм интуиционизм?
350 58274
>>58271
в /ga/
351 58275
>>58273
Кнут Искусство программирования, Кормен Алгоритмы: построение и анализ.
352 58276
>>58274
Так этих сойбоев проклятых с окрестностями проткнутыми, веруны хуевые.
353 58277
>>58273

> Так а что почитать нормальному человеку для вката в конструктивизм интуиционизм?


HoTT book и читай. Что непонятно - читай по ссылкам в конце глав. Можно для наглядности параллельно вот с этим https://www.cs.bham.ac.uk/~mhe/HoTT-UF-in-Agda-Lecture-Notes/index.html и в агде все разбирать.
>>58275
Вообще мимо.
Снимок экрана 2019-08-30 в 22.44.53.png12 Кб, 415x135
354 58278
>>58277
пойду поем
Снимок экрана 2019-08-30 в 22.47.44.png169 Кб, 1041x700
355 58279
екать вот это залупа
356 58284
>>58270
Единственное в чем Брауэр был прав, это в том что он насрал на собственную философию тем что приводил неконструктивные доказательства теорем.
357 58285
>>58284
Он не срал на собственную философию, дело в том, что при его жизни она была недостаточно развита, чтобы в ней можно было доказать все. Для одного человека, даже Брауэра, это неподьемная задача.
358 58313
Тут конечно одни зумера флексят, однако ж запощу. Любые известные мне нейробиологические данные прямо доказывают правоту Брауэра, от Павлова до самых последних результатов. Гамалогии и тапалогии, их представление в мозгу:
https://www.frontiersin.org/articles/10.3389/fncom.2017.00048/full
359 58314
>>58313

>Гамалогии и тапалогии, их представление в мозгу:


Так а ты не зумер что ли? Совершенно примитивная с точки зрения математики статья, они просто считают числа Бетти и всё. Куда более продвинутые методы описаны даже в уже устаревшей книжке "Computational Homology", не говоря уже о каком-нибудь cohomological feature extraction, который используется в свежих статьях по нейрофизиологии.
Вот, например, свежее ревью, зотя многого тут нет
https://www.mitpressjournals.org/doi/pdf/10.1162/netn_e_00096

Вобщем, пока что ты похож на того самого "флексящего зумера".
360 58315
>>58314
Т.е. ты даже не понимаешь разницы между структурами в ЦНС, ответственными за кодирование математики как явления и применением методов гамалогий к описанию структур в ЦНС?
361 58388
>>58313
Ты уже нагуглил чем отличается kmeans от knn, золотце?
15670745919610.jpg126 Кб, 439x510
362 58397
363 58399
>>58397
Ну и очень плохо, куда тебе с браузером твоим, иди основы лучше учи.
364 58402
>>58399
Иди сам что-нибудь поучи, зумер. Каждый школотрон что-то из себя корчит и обязательно считает, что может указывать другим, что им делать.
365 58403
>>58402
нет ты :)
366 58404
>>58402
В том-то и дело, что я вполне вправе указывать петухам, которые пытаются указывать мне как правильно думать, при этом не зная элементарщины.
367 58417
>>58404

> которые пытаются указывать мне как правильно думать


А я тебе указываю? В хуй ты мне не стучишь, чучело зумера. Это ты "тип патралеть)))" припёрся >>58388 умным себя наверное считаешь, тупень?
368 58422
>>58417
Ну если под умным ты имеешь ввиду просто не пиздеть лишнего если в чём-то не разбираешься, как делают невежественные петухи вроде тебя, то да.
369 58432
>>58422
В чем я не разбираюсь, хуила?
370 58443
>>58432
Судя по наблюдениям ни в чём о чём пиздишь. Ни математику нормально выучить не пожелал, ни даже гамалогии освоить, ни усвоить самую базовую информацию которая выпадает в первой ссылке когда гуглишь "what is machine learning".
371 58456
>>58443
По каким наблюдениям? Твои кукареканья это не наблюдения и не мнение, это просто кукареканья обиженного.
372 58460
Почему математики относятся к логике с некоторым презрением?
373 58462
>>58460
Не с презрением, просто не нужно делать вид, что это хоть как-то имеет отношение к настоящей математике.
374 58467
>>58460
Потому что логика это не математика, математик постоянно пользуется логикой, да, а ещё он должен уметь писать и читать, но никто не говорит, что умение писать и читать это математика.
375 58470
>>58467
А в чём принципиальная разница между логикой и математикой?
376 58471
>>58470

>в чём принципиальная разница между авиалайнером и яблоком


Я не знаю как на такие вопросы отвечать.
377 58472
>>58471
И там и там ведь определения и теоремы с доказательствами.
378 58477
>>58472
Сейчас бы слушать шизика. Логика это и есть математика, т.к вся математика сводится к основаниям, а основания это логика. Но полтора сектанта веровают, что оснований нет, а математика это только гамалогии.
379 58478
>>58477
Приведи пример теоремы из оснований, которая имеет приложение в математике. Обратных примеров выше крыши.
380 58479
>>58477
основания не сводятся к логике. гугли обсёр рассела и фреге и их программы логицизма
381 58481
>>58479
Я про унивалентные основания.
382 58482
>>58481
Ну так и приведи пример раз не спишь, нет такого, чтобы теорема из логики применялась где-то в математике.
383 58483
>>58482
Любые возможные объекты и действия над ними в гамалогиях являются таковыми исходя из определенной аксиоматики или набора правил вывода, ты ведь не будешь с этим спорить. Если ты за гамалогиями не видишь логики, значит ты ее просто принимаешь по умолчанию.
384 58484
>>58483
Любые возможные объекты и действия над ними являются значками на доске исходя из правил чистописания, ты ведь не будешь с этим спорить. Следовательно, математика это часть каллиграфии.
Один и тот же "аргумент" повторяешь, за семь лет мог бы что поумнее придумать.
Сейчас напишет: я в разделе со вчерашнего дня
385 58485
>>58484

> Следовательно, математика это часть каллиграфии.


Математика это язык. Со своими правилами. Поэтому сигнифика - допустимый вариант оснований, что показал ещё Маннури. Что сказать-то хотел? Каллиграфия причем? Погугли хоть что это. Факт в том, что в любой математике все допустимые действия исходят из соответствующей аксиоматики либо набора правил вывода. Без этого никакая математика в принципе не возможна.
386 58486
Математику можно представить в терминах логики = математика это часть логики.

Конструктивист должен знать:
- изоморфизм Карри-Говарда и тезис Чёрча;
- содержание диссертации Брауэра в переводе Гейтинга;
- пять уровней языка и четыре способа отрицания по Маннури;
- интерпретацию логических констант по Брауэру-Гейтингу-Колмогорову;
- теорию статистического обучения Вапника и модель spikgram Миколова;
- отличия машины Тьюринга от машины Поста.
Конструктивист обязан:
- отрицать закон исключённого третьего;
- отрицать любую математику, не выразимую через типизированную лямбду в MLTT или нормальные алгорифмы Маркова;
- переписать на прувере AUTOMATH де Брауна книгу "Основы математического анализа" Ландау;
- представить все формальные теории в терминах алфавитов, термов и манипуляций с ними;
- свести гомологическую алгебру к исчислению предикатов, используя нумерацию Гёделя.
387 58487
Опять клоунессу порвало >>58486 так всегда бывает, когда возразить по существу нечего, начинается сранье тухлыми пастами. Ничего нового.
388 58488
>>58486

> Математику можно представить в терминах логики = математика это часть логики.


Не "можно представить", а "исходит исключительно из". Ты даже этого не понимаешь.
389 58489
>>58485

>Математика это язык. Со своими правилами


Нет, не язык. Гомологическая алгебра это язык. Со своими правилами, которые являются теоремами, кстати.

>Поэтому сигнифика - допустимый вариант оснований, что показал ещё Маннури


Не показывал. Ссылку, где он показал? Ты же сам его работы не читал.

>Факт в том, что в любой математике все допустимые действия исходят из соответствующей аксиоматики либо набора правил вывода


Только "соответствующая аксиоматика" (= соответствующие теоремы) бывает разная, поэтому это пустые слова.
Математику невозможно записать не пользуясь значками, значит часть каллиграфии.
390 58490
>>58488
Пример утверждений, которые "исходят чисто из" логики. Нет таких.
391 58491
>>58490

> Пример утверждений, которые "исходят чисто из" логики


Само понятие "утверждения" или "высказывания" это элемент логики
>>58489

> Гомологическая алгебра это язык.


Боженька на Синае его выдал? В воздухе висит язык, да?

> Только "соответствующая аксиоматика" (= соответствующие теоремы) бывает разная,


Аксиомы и теоремы это разные вещи. Ты даже не знаешь, чем аксиома от теоремы отличается.
392 58493
>>58491

>Само понятие "утверждения" или "высказывания" это элемент логики


То есть до логики утверждений не высказывали? Математика пользуется словами, значит это раздел лингвистики. У Баруха Спинозы в "Этике" есть теоремы и схолии, этика значит тоже часть логики?

>Боженька на Синае его выдал


Гильберт и Нётер в Гёттингене.

>Ты даже не знаешь, чем аксиома от теоремы отличается.


Это ты не знаешь. Любая аксиома является теоремой. Пример: d^2 = 0. Аксиома и теорема. Приведи пример аксиом из математики, не являющихся теоремами.
393 58494
>>58493

> То есть до логики утверждений не высказывали?


Ты и разницу между дедуктивным и индуктивным выводом не знаешь?

> Гильберт и Нётер в Гёттингене.


Гильберт обосрался с формализмом в качестве оснований.

> Это ты не знаешь. Любая аксиома является теоремой.


Хоспаде как у тебя в голове насрано. Аксиому можно рассматривать как теорему без посылок, т.е что-то взятое с потолка, а не вытекающее из чего-то другого. Теорему можно доказать, аксиому нет, ее можно только использовать в дальнейших построениях.
394 58495
Заметил одну любопытную вещь - любители матлогики это чаще всего погромисты. Возможно потому, что в шарагах часто преподают вещи вроде конечных автоматов, логики предикатов, ну и начпоп покруг теоремы Гёделя конечно.
395 58498
>>58494
Гильберт помимо "оснований" занимался ещё физикой, функциональным анализом, алгебраической геометрией и гомологический алгеброй. Как и Брауэр, кстати, основной его вклад в математику отнюдь не в шизофренических высерах (вне зависимости от того, что он сам думал или говорил по этому поводу; Ньютон так же алхимиком был, Кеплер астрологом, ну а Брауэр вот интуиционистом).

>Ты и разницу между дедуктивным и индуктивным выводом не знаешь?


В теологии и юриспруденции выводы тоже дедуктивны. Это разделы логики?

>Аксиому можно рассматривать как теорему без посылок, т.е что-то взятое с потолка


То, что в одной области аксиома, в другой это теорема. В математике так по крайней мере. Основное положение гомологической алгебры не только можно доказать, в любом нормальном курсе его доказывают. Несколькими способами. То, что гомологическая алгебра является языком математики, не значит что основные её принципы нельзя проверить средствами других разделов. Более того, это справедливо по отношению к любой области. Только в "основаниях" берется бред с потолка. В математике любая аксиома имеет длинную историю в качестве теоремы.
396 58499
>>58498

> Только в "основаниях" берется бред с потолка.


Например?

> В математике любая аксиома имеет длинную историю в качестве теоремы.


Я ж говорю, ты даже разницы между аксиомой и теоремой не понимаешь. Аксиома недоказуема, если ее можно доказать, это теорема. Например, аксиома унивалентности Воеводского это аксиома в HoTT, но доказуемая теорема в cubicaltt.
397 58500
>>58499

>Аксиома недоказуема, если ее можно доказать, это теорема


Получается, что вычислимость - это аксиома? Ну то есть, мы можем рисовать палочки какое-то конечное число раз, но бесконечное не можем, и для бесконечного случая алгоритмы не являются доказательством... Тогда вычислимость - аксиома.
15665918270551.png99 Кб, 511x407
398 58501
>>58500

> Получается, что вычислимость - это аксиома?


Вычислимость это не аксиома, а процесс, я же приводил определение.

> для бесконечного случая алгоритмы не являются доказательством...


Так ты и не осилил понять в чем разница между актуальной и потенциальной бесконечностью. Вот ты не понимаешь вещи, которые можно объяснить 10 летнему ребенку, при этом хочешь показать, что понимаешь в гамалогиях.
399 58502
>>58495
Просто потому что для матлогики на уровне того чтобы кукарекать про то что никто ничего не понимает и копаться в строгом доказательстве каких-то элементарных утверждений не нужно ни какой-то особой подготовки, ни особого ума. Тупеньким прогерам как раз подходит для того чтобы тешить комплекс "я тоже умный!!".
400 58504
>>58502

> копаться в строгом доказательстве каких-то элементарных утверждений не нужно ни какой-то особой подготовки, ни особого ума.


Ага, то ли дело просто веровать без доказательств, тут дохуя ума надо.
jfe0f95h.jpeg102 Кб, 1000x700
401 58505
>>58502

> кукарекать про то что никто ничего не понимает и копаться в строгом доказательстве каких-то элементарных утверждений


Картинка отвалилась.
402 58506
>>58501

>процесс


Который ты можешь проводить только для конечного числа шагов. Ты же аксиомой постулируешь, что вычислять можно бесконечное число раз, когда на деле существует константа, которая ограниченная сверху числом атомов во вселенной, что дальше неё вычислять уже не получится. Нельзя бесконечно рисовать палочки рано или поздно мел кончится. И да, это аксиома, ты не приводишь доказательства, что можно рисовать палочки бесконечно много раз.
403 58507
>>58504

>веровать без доказательств, тут дохуя ума надо


В вычислимость веровать?
404 58508
>>58506

> Ты же аксиомой постулируешь, что вычислять можно бесконечное число раз,


Что ты несёшь... Какие аксиомы, кто что постулирует? Есть правило, число шагов которого не задано. Вот и все. Зачем додумывать хуйню на ровном месте и выдумывать то, чего в понятии потенциальной бесконечности нет и никогда не было?

> существует константа, которая ограниченная сверху числом атомов во вселенной


И причем тут вычислимость? Смешно читать эти аппеляции к физическому смыслу математических понятий от веровающего в актуальные бесконечности. Ещё расскажи, что вещественные числа ограничены постоянной Планка и для величин меньше нее физического смысла не имеют.
image.png45 Кб, 1200x642
405 58509
>>58508

>Какие аксиомы


Аксиома того, что вычисление можно провести.

>кто что постулирует?


Ты.

>Есть правило, число шагов которого не задано.


Разве оно по умолчанию не меньше той константы о которой я упомянул? Назовём её константой Браузера. И обозначим алефом.

>И причем тут вычислимость?


Вычислимость подразумивает вычисление на чём-либо, те же самые палочки рисовать. Уж тут ты вилять жопой не будешь.

>потенциальной бесконечности


А вот и аксиома существования потенциальной бесконечности подъехала. Доказательство её существования ты привести не сможешь.Тут сплошная вера. Вера в том, что вычисление можно провести в потенциальной бесконечности, постулат-аксиома Браузера.
406 58510
>>58483
И что, результатов-то это никаких не даёт, я ж не отрицаю, что как способом описания этим пользуются, но точно так же и русским языком пользуются и умением писать и читать, без этого математик не может, но это не значит, что всё это можно назвать математикой, так как всё это никак не помогает находить новые факты.
407 58511
>>58510

>как способом описания этим пользуются, но точно так же и русским языком пользуются и умением писать и читать, без этого математик не может,


Ты не видишь разницу между правилами русского языка и правилами математики как языка.
>>58509

>Разве оно по умолчанию не меньше той константы о которой я упомянул?


Отсутствие числа шагов в правиле это отсутствие, никаких "констант" и ничего другого оно под собой не подразумевает. Сама постановка вопроса про число шагов там, где никакого числа нет, не имеет смысла, ты сам этого не видишь? >>58509

>А вот и аксиома существования потенциальной бесконечности подъехала. Доказательство её существования ты привести не сможешь.


Еще раз. Это не аксиома. Аксиома - это правило без посылок. Вычислимость - процесс. Если рассматривать это как правило, то посылки в нем есть, а это уже выводит вычислимость из определения "аксиома".
>>58509

>Вера в том, что вычисление можно провести в потенциальной бесконечности,


Если бы было можно, в названии не было бы слова "потенциальная". Ты не носитель русского языка или что?
1.png28 Кб, 844x97
408 58512
Определение вычислимости, в сотый раз. Картинка отвалилась.
409 58513
>>58511

>Ты не видишь разницу между правилами русского языка и правилами математики как языка.


Во, я понял какую аналогию привести, логика/основания это типа орфографии, конечно писать грамотно это ок, но писателем тебя это не сделает, фантазии не прибавит, мозгов не даст, в то же время очень многие писатели, тот же Г.Х.Андерсен, с ошибками писали и это никак не мешало им и не помогало. Логика примерно из той же области, да и вообще ей интересны совсем другие вещи, как разрешимость, противоречивость и тд, можно конечно найти применение логики к математике, типа из модельной полноты алгебраически замкнутых полей характеристики 0 можно получить теорему Гильберта о нулях, ну так её можно и без этого получить и все примеры хоть какого-то применения логики из той же оперы, даже если и применяется, то давным-давно есть аналог доказательства без использования оснований.
410 58514
>>58511

> Это не аксиома.


Нет. Как раз аксиома.

>процесс


Который ты можешь проводить только для конечного числа шагов. Иначе у нас используется аксиома существовании потенциальной бесконечности. Чистая вера. Ты ведь так и не предоставил её доказательства существования. Значит аксиома, ты сам говорил -

>Аксиома недоказуема, если ее можно доказать, это теорема.


>Если бы было можно, в названии не было бы слова "потенциальная".


Значит, ты признаёшь я прав и алгоритмы можно проводить только для конечного числа шагов? Так называемая алеф-константа Браузера. Для каждого алгоритма она своя.
Замечу, что вычислить константу Браузера для конкретного алгоритма может быть невозможно. Т.е. проблема алгометрически неразрешима, невычислима. Поскольку вычисление константы Браузера может затребовать количество шагов больших чем атомов во вселенной.
image.png1,4 Мб, 1500x1239
411 58515
>>58514

>Баузер


Так дракона в марио звали.
image.png1 Мб, 1280x720
412 58516
>>58515
В голосину просто.
413 58518
>>58515

> марио


Вот это реально твой уровень. Математика не твое.
>>58514

> Который ты можешь проводить только для конечного числа шагов. Иначе у нас используется аксиома


Как понятие аксиомы вообще связано с конечностью? Чёт ты совсем запизделся.
Ещё раз, не можешь понять, что такое "потенциально" и чем отличается от "фактически", ну я даже не знаю, училку по русскому спроси.
414 58519
>>58518
Хватит вилять жопой!
Бери и доказывай, что существование потенциальной бесконечности не аксиома. Но ты не сможешь, а знаешь почему? Потому что ты в неё веришь и всё. Потенциально можно и до больших кардиналов перебором добраться. К чему ты вообще о потенциальности говоришь? Потенциально можно решать математические задачи без вычислимости вообще. Но ты сам говоришь, что это просто значки. Чем твои значки лучше? Ты говоришь именно об актуальной бесконености. Алгоритм нельзя рассматривать для произвольного числа шагов. Только для конкретного для данного алгоритма числа Браузера, которое строго меньше числа атомов во вселенной. Иначе идёт потенциальная бесконечность о которой ты и толкуешь. Можно написать алгоритм, но это просто значки.
415 58520
>>58518
Кстати, если Числа Браузера больше числа атомов во вселенной, то алгоритм невычислим. Сорри. Но твои значки с вычислимостью тут бессильны. То есть, это что получается, не все алгоритмы вычислимы!!!
416 58521
>>58514

>Который ты можешь проводить только для конечного числа шагов


Конечным должен быть набор инструкций, алгоритм может просто никогда не останавливаться на данном входе и это не запрещено.
417 58522
>>58521
Вот конечный набор инструкций - выичслить 9^903, т.е. 903 разf умножить 9на себя. Однако результа не будет никогда. Это пример невычислимого алгоритма для данных чисел. Как думаешь, какое у него числа Браузера? Думаю, для всех невычислимых алгоритмов можно считать число Браузера равным бесконечности.
418 58523
>>58521

>алгоритм может просто никогда не останавливаться


Кстати, нет. Ещё одна аксиома. Не факт, что во вселенной бесконечное время. И сейчас ты делаешь на этом допущение. Сплошная вера.
419 58524
>>58522
Нет, во-первых что значит невычислимый алгоритм, такого понятия нет, есть понятие вычислимая функция, это такая функция, для которой существует алгоритм, такой что если f(x) определено, то алгоритм останавливается на входе x и печатает f(x), если не определено, то он никогда не останавливается на входе x. Например такой алгоритм
если x >= 0 то печатай корень из x
иначе бесконечный цикл(while(1))
будет вычислить функцию sqrt(x). Набор инструкций конечен, но если передать отрицательное число он никогда не остановится.
>>58523
Ну понятно, что когда-то компьютер сломается или ещё чего, но мы же всё это проделываем на гипотетической автономной вечной машине, так что.
image.png594 Кб, 1200x900
420 58525
>>58524

> во-первых что значит невычислимый алгоритм


Алгоритм с бесконечным числом Браузера. Который нельзя вычислить, пример я приводил. Вычислить 9^903 нельзя.

>Набор инструкций конечен, но если передать отрицательное число он никогда не остановится.


Анон, это просто значки. Вот смотри, значок Аллах.jpg

>такого понятия нет


Теперь есть. Надо будет статью в archiv.org загрузить.

>он никогда не остановится


Вот она аксиома - существования бесконечного времени. Нельзя такое вычислить. По сути, алгоритм остановится рано или поздно. Всюду скрытые постулаты.

>гипотетической автономной вечной машине


Что это такое? Вера в гипотетическую вечную машину. Быть такого не может. Это что ещё одна аксиома!!! Так дело не пойдёт. Алгоритмы у них бесконечные. Напрогаются, а потом мерещится им вычислимость там, где её и не пахнет. Не все алгоритмы вычислимые, кстати.
421 58526
>>58513
Или другой пример, теорема Левенгейма-Сколема, типа вот есть алгебраически замкнутое поле С, "алгебраически замкнутое поле" можно записать счётным числом аксиом по теореме ЛС если конечная интерпретация имеет бесконечную модель, то она имеет элементарную подмодель. Значит существует алгебраически замкнутое подполе поля С, но опять же, это и так всем понятно(корни многочленов с целыми коэффициентами). Типа даже то, что из логики можно получить в математике это всегда можно получить другим путём, более простым, и давно уже получено, ничего нового она не даёт, полезности кроме проверки на компе доказательств нет, да и то там тоже скорее гипотетической проверки. Хуита без задач короче.
>>58525
Ты типа рофлишь, я понял, ну так я не конструктивист же, просто нет такого вычислимый/невычислимый алгоритм, а так мне пох, не хочу отвечать на рофлы.
422 58527
>>58526

> если конечная интерпретация


Если теория с конечной сигнатурой в смысле.
423 58528
>>58519

> Бери и доказывай, что существование потенциальной бесконечности не аксиома


Ты дебил, реально. Потенциальная бесконечность это правило с посылками, аксиома это правило без посылок. Сколько мне раз это написать, чтоб ты понял? Потенциально не равно фактически, никто не утверждает, что возможно построить то, что задано правилом без ограничения числа шагов. Поэтому можно говорить об абстракции потенциальной бесконечности, а не о построении, ей соответствующей. Опять же, сколько раз ещё надо это написать, чтобы ты понял?

> Алгоритм нельзя рассматривать для произвольного числа шагов


Можно, именно такому по оритму соответствует правило без указания точного числа шагов. И таких правил дохуя и больше.

> Можно написать алгоритм, но это просто значки.


Гамалогии это так же значки, все правильно.
>>58520

> Кстати, если Числа Браузера больше числа атомов во вселенной, то алгоритм невычислим.


Надо же, неужели начал понимать, что далеко не все вычислимо фактически? Я больше скажу, не всегда можно сказать, завершится ли алгоритм. Проблема останова, слышал, не?
424 58529
>>58528

>не всегда можно сказать, завершится ли алгоритм


Машина не может, человек может.
425 58531
>>58529

> Машина не может, человек может.


Хуйню не неси, пжлст. Есть полторы эвристики для 1,5 случаев, когда человек может. В некоторых случаях это может и прувер. Но в общем случае - нет. Ничего в тебе нет волшебного, зумерок. И значки переставлять ты можешь не лучше машины Тьюринга.
426 58532
>>58531
Не знаю, человек же может понять, когда прога зациклилась. Ну хотя ок, это простые случаи, в общем случае непонятно может или не может.
427 58533
>>58532

> в общем случае непонятно может или не может.


Давно понятно, что не может. Тьюринг ещё в 30х годах доказал. Даже если к машине Тьюринга приколхозить боженьку, решающего алгоритмически неразрешимые задачи, это не снимает проблемы останова.
428 58534
>>58533

>ьюринг ещё в 30х годах доказал.


Ссыль.
429 58535
>>58534
Turing Oracle machine гугли. Точное название работы не помню, это была его пхд диссертация, 1939 год.
430 58536
>>58535
Ок, мерси.
431 58537
>>58535

>https://en.wikipedia.org/wiki/Turing_jump


>A machine with an oracle for the halting problem can determine whether particular Turing machines will halt on particular inputs, but they cannot determine, in general, if machines equivalent to themselves will halt.


Это?
432 58543
>>58528
Ну-ка, проверим.
Так чем knn отличается от kmeans?
433 58545
>>58543
Тем, что ты зумер без мозгов? Любой мошонлернинх это просто разновидности EM алгоритма, но тебе не хватит мозгов понять, почему. Так что ебал я твой зумерский рот, маня.
image.png52 Кб, 225x225
434 58546
ПЛУТОНИСТЫ ЗДЕСЬ?
image.png368 Кб, 1000x733
435 58547
>>58546
БРАУЗЕРЫ НА МЕСТЕ
image.png42 Кб, 166x230
436 58548
>>58546
ПРОГЕРЫ ТУТ
image.png64 Кб, 179x281
437 58549
>>58546
ТЕОРЕМА ГЕДЕЛЯ О НЕПОЛНОТЕ ЗДЕСЬ
438 58551
>>58546
>>58547
>>58548
>>58549
Все, этот зумер прохудился. Набивайте соей другого и подавайте сюда вместо сломанного, по гарантии.
439 58552
>>58543
Кстати, ты не феминист случайно? А то есть один клоун... Или на мейлру для каждого раздела отдельных шизиков нанимают постинг поднимать?
kuricakarri.jpg88 Кб, 660x300
440 58553
>>58546
ИЗОМОРФИЗМ КАРРИ-ГОВАРДА ПРИСУТСТВУЕТ
441 58557
>>58528
О узнаю конструктивного петушка с первой ноты. Ну как дела, все резвишься?
С формализацией алгоритма разобрался или все еще живешь в маня-мирке из духа Брауэра?
442 58558
>>58545
>>58552

> феминисты клоуны зумиры ааааа сасать лизать твари уууу


Пиздец, покажи где зумеры тебя трогали?

> Любой мошонлернинх это просто разновидности EM алгоритма


Да-да, а математика это разновидность каллиграфии.
Мы уже поняли что основной твой мотив это редукционизм первоклашки, потому что позволяет заглушить комплекс неполноценности от того что ты ничего на самом деле не знаешь.
knn кстати это k nearest neighbors, можешь рассказать чем он от kmeans отличается?
image.png414 Кб, 500x546
443 58559
>>58551
Мог бы просто написать КЛОУН НА МЕСТЕ, а не устраивать клоунаду.

>>58552

>А то есть один клоун...


Спа, двач есть один клоун...
15670745919610.jpg126 Кб, 439x510
444 58560
>>58558

> комплекс неполноценности от того что ты ничего на самом деле не знаешь.


Да-да, полный бред и хуйню несёшь ты, а ничего не знаю я. Я тебя услышал, поди подмойса, маня.
6e65b998fd3276efde72836d684ca950.png72 Кб, 620x445
nobu 445 58741
Аноны, конец математики для человеков?

https://nplus1.ru/news/2019/09/12/ai-imo
446 58747
>>58741
Конец второкультурной параши.
447 58764
>>58741
Какойто кнн невнятный, ничего не получитца
448 58816
>>58741
Вроде ничего необычного.
О «Даше» кто-нибудь слышал?
449 58834
>>58816
Что за «Даша»?
P90313-115951.jpg76 Кб, 680x510
450 58841
>>58834
https://techcrunch.com/2019/08/01/dasha-ai-is-calling-so-you-dont-have-to/
https://dasha.ai/
Если коротко: бот симулирующий человеческую речь.
451 58843
>>58841
Послушал примеры, по моему там что-то вроде технопранка, т.е. мужик заранее наговаривает фразы, а не симуляция речи.
452 58850
>>58843
Они ставят целью пройти тест Тьюринга...
453 58853
>>58850

>у вас указано


>восточная


>кухня


>верно


>японская кухня


>есть?


До теста Тьюринга им срать и срать, лол.
454 58854
>>58853
В том смысле, что там каждое слово отрывками идёт, будто записали заранее и вырезали, и потом после каждого пункта есть есть есть есть, понятно, что это робот.
455 59347
Основы математики это математика сама по себе или нет? С точки зрения нормис и то, и другое -- это переписывание символов с бумажки на бумажку, которые один хуй ничего не обозначают (разве что другие символы на бумажке). Есть ли разница, если разницу объяснить может только математик математику?
залетный
456 59349
>>59347
Официально да, по факту ближе к программированию, чем к математике, и я не пыня гротендиковская какая-нибудь, мне самому основания нравятся, вот сейчас эту книжку прорешиваю
https://www.mccme.ru/free-books/shen/shen-logic-part3-2.pdf
, но отрицать очевидное смысла нет.
457 59350
>>59349

>по факту ближе к программированию, чем к математике


В каком плане? Что апологеты оснований не доказывают теоремы на бумажке, а ебутся с пруверами? Вопрос без провокации, просто интересно.
тот же самый залетный петух
458 59351
>>59350
Олсо, для меня "программирование" это асм и императивщина вроде Си какого-нибудь, максимум ООП а ля сисярп, все, что творится в хацкеле и подобных языках, для меня уже выглядит, как математика, т.е. как непонятная загадочная хуйня. Поэтому и переспрашиваю, для меня разница не очевидна.
459 59352
>>59350
Трудно объяснить, применяются те же интуиции, что и в программировании или что-то в таком духе. А математика это другое, ты это прямо сразу чувствуешь. Ну и сложность, основания/программирование/логика они все как бы количественные, там сложность в объёме, типа как вот выкопать одну картошку просто, а вскапывать целое поле заебёшься, вот там такая примерно сложность, плоская что-ли, сложность вширь. А в математике сложность вглубь как бы, качественная, и усилия совсем другого рода применяются, не усилие воли, а усилие осознания что ли.
460 59353
>>59352

>, а усилие осознания что ли.


https://www.youtube.com/watch?v=NIOyMHO0DHY
Вот как тут, перед тобой каша, ты смотришь на неё со всех сторон и с определённого угла перед тобой возникает картина, задача найти этот угол зрения и готовых рецептов нет в отличие от алгоритмов вскапывания картошки. Ну по крайней мере я именно так разницу воспринимаю, может кто дополнит.
461 59355
>>59352
Я понял, к чему ты ведешь, просто на мой взгляд, даже в том же программировании можно встретить задачу, которую вообще хуй знает как решать, подступиться неоткуда (т.е. это именно поиск нужного угла зрения). Наверняка такие задачи есть и в основах. Получается, что граница все равно очень размытая.
Кстати, чем вы, математики, занимаетесь в основном? Читаете учебники/научные статьи и потом доказываете теоремы (как уже доказанные, чисто чтобы потренироваться, так и придумываете новые)?
462 59356
>>59352
Из-за этого представления о глубоком внутреннем мире нужном для понимания математики многие математику и отказываются понимать.

Нужно описывать математическое поведение.
463 59358
>>59355

>можно встретить задачу, которую вообще хуй знает как решать


Да понятно, а в математике есть чисто технические задачи, это просто моё ощущение, не более. Я не математик, просто дома сижу задачки решаю.
>>59356

> о глубоком внутреннем мире нужном


Не, я вообще не о том. Просто это разное, не то, что одно лучше, другое хуже, а просто разное. Математика это шизофрения, а программирование/логика/основания это аутизм, как-то так.
464 59386
>>59352

>Ну и сложность, основания/программирование/логика они все как бы количественные, там сложность в объёме, типа как вот выкопать одну картошку просто, а вскапывать целое поле заебёшься


Это довольно странный взгляд на логику/основания (наверное происходящий из-за существенной переоценки веса людей, занимающимися формализацией математики в пруверах). Основной прогресс там, как и во многих других частях математики, происходит от обнаружения оригинальных идей и инкрементарного увеличение понимания, а вовсе не в таком ключе, что заранее все в целом ясно и остается только произвести большой объем работы.
465 59387
>>59355

>Кстати, чем вы, математики, занимаетесь в основном? Читаете учебники/научные статьи и потом доказываете теоремы (как уже доказанные, чисто чтобы потренироваться, так и придумываете новые)?


В целом да. Хотя если описывать, как я занимаюсь математикой, то скорее я в основном пытаюсь разобраться в каких-нибудь интересных мне вещах. Передоказывание известных теорем и придумывание новых при этом составляют естественную часть такой деятельности. При этом, статьи я сколь-нибудь детально обычно не читаю, а фокусируюсь на том, чтобы выловить из статьи новые для меня идеи для чего обычно нужно понять, где в статье происходит что-то удивительное, а дальше понять, как именно оно происходит.
466 59388
>>59386

>что заранее все в целом ясно и остается только произвести большой объем работы.


Я имел ввиду, что сложные задачи в "computer science", буду там всё
это называть, это увеличенные копии простых задач что ли, грубо говоря ты описал так, будто я имею ввиду, что сложность с увеличением объёмом растёт линейно, но она растёт по экспоненте и вот тут уже применяются оригинальные идеи и тд. Но отличаются эти задачи от своих простых собратьев только увеличенным "объёмом" в формулировке. Все умеют копать картошку, но попробуй вскопай всё поле, все умеют собирать кубик рубика 2 на 2, но попробуй собери 6 на 6, вот такого плана что-то, это не значит, что 6на6 ровно в три раза проще собрать, нельзя просто взять и применять те же интуиции, что и в 2 на 2, но общие принципы всё равно сохраняются, хотя сложность возрастает.
467 59480
>>50442 (OP)
Пункт 2ой курт гёдель пересечение с физикой и логикой
Любая мыслящая система структурно отличная от среды носителя ее сознания, должна и будет иметь постулатные утверждения формальной системы понятий в ее науке
Так как у любой системы форм из квантового вакуума должна быть ограниченность по векторам пространства времени и познаваемой сложности.Вследствие бесконечности Большой Вселенной.
Для прикола рекомендую просмотреть книгу авадхута гита где Бог несмог познать себя до конца.Можно воспринимать это как филосовское и логическое прозрение древних философов индии.
468 60321
>>50442 (OP)
Есть два стула. Программа магистратуры в европке по логике/основаниям математики (могу закончить за год вроде) и пытаться в науку или забить хуй и быть погромистом 300кк/сек
Расскажите че как, кто в тусовке. Есть ли реальная возможность тусить с отцами Лефами или буду сидеть в Канаде как лох по итогу? Математику знаю оч.хуево. Ну до схем, примерно.
469 60322
>>60321
К математике за 3-4 месяца можно более менее привыкнуть. Чтобы читать как обычный текст, как первоклассник. Но ты пиздун, и ни в какую Канаду не едешь, ясное дело.
470 60324
>>60322
Как научиться? Я открываю любой текст и впадаю в ступор где-то на сопряженных функторах. Может я просто тупой, хз
А Канада, это шуточка. У них там какой-то дрочь на хотт, но абсолютно бессодержательный (ну опять, это мнение со стороны от человека, который нихуя не знает толком).
471 60325
>>60324
я предлагаю не читать на русском. У всех математических терминов в переводе на русском нелогичный бред: на нашем языке таких слов нет, а если и есть, то аналогию провести нельзя.
472 60326
>>60325
Я не думаю, что проблема в языке. Да и читаю я обычно на английском. Читал. Для магистратуры нужно денег накопить, работаю сейчас просто.
473 60327
>>60326
тогда не знаю, что ты это слово "функторы" сказал. Я вот не знаю, как на русском из мат.анализа что называется, а я только его и знаю, но знаточества хорошо, благодаря тому что не читал никогда русских книг.
474 60328
>>60321
Начну с очевидного - при равных усилиях быть программистом это гораздо более денежная деятельность.

>Есть ли реальная возможность тусить с отцами Лефами


Конкретно Мартин-Лёф сейчас уже весьма пожилой и на пенсии. Хотя в принципе он пока ездит на конференции и участвует в семинарах у себя в Стокгольме. В принципе, попасть на PhD в каком-нибудь центральном месте в Европе, например в Вене или Амстердаме (если ты не хочешь учить сколь-нибудь нетривиальной математики, но хочешь как-бы заниматься логикой, Амстердам как раз подходит) довольно просто. Но как и везде в науке, чем ты старше, тем сложнее с позициями. Еще, видимо, если притвориться, что ты занимаешься Theoretical Computer Science, это улучшает карьерные перспективы.
475 60396
>>60328
Хм, а почему Амстердам? Что-то не припомню там никого стоящего. Ну а формально я и так буду theoretical CS (вот только мне непонятно, почему с таким дипломом легче найти позицию, ведь это ж проще математики).
И да. Что значит "чем старше"? Именно, количество лет, или уровень позиции? Я слышал, что " отсчет годов " идёт с момента PhD.
476 60400
>>60396

>Хм, а почему Амстердам?


Я сам не особый фанат амстердамской логики (что можно было заметить из моего комментария), но тамошний ILLC по численности людей занимающихся логикой вполне может быть самым крупным местом в Европе, хотя я это не проверял.

>вот только мне непонятно, почему с таким дипломом легче найти позицию, ведь это ж проще математики


Я имел ввиду, что проще получить позицию в TCS (так как их банально больше).

>Я слышал, что " отсчет годов " идёт с момента PhD.


В формальных критериях в основном именно с момента защиты. Хотя, иногда есть и явно возрастные ограничения.

> Что значит "чем старше"? Именно, количество лет, или уровень позиции?


Не берусь судить, насколько обращают внимание собственно на возраст (хотя, конечно, могут и обращать). И да, чем выше уровень позиции, тем сложнее её получить.
477 60401
>>58270

> Все, дискутировать больше не о чем, вся математика конструктивна


Не понимаю, почему? Типа ты берёшь их формализм, добавляешь некую аксиому требуюмую для "обычной математики" (ну например аксиому выборки) и дальше все выводится то же самое ? Но где гарантия, что эта доп.аксиома и аксиом униваленостни не противоречивы?

>>60400
А что они там вообще делают, впринципе? Идейно может написать?
В остальном понял, спасибо, анон.
478 60402
>>60401

>А что они там вообще делают, впринципе? Идейно может написать?


По большей части модальную логику. Но, в принципе, там есть люди занятые и другими вещами.
479 60412
>>60396

Думаю Амстердам из--за тамошних шлюх. Он хочется отбъебаться от мамки и пойти во все тяжкие.
480 61878
Так к математике применим научный метод?
481 61879
>>61878
Нет. Математика - не наука.
482 61886
>>61878
Можно изъебнуться и считать доказательства результатами мысленных экспериментов.
483 61888
>>61879
>>61886
Пучкисты не знают нормального определения математики из Большой Советской Энциклопедии:

> Математика — наука о количественных отношениях и пространственных формах действительного мира.

484 61889
>>61888

>действительного мира.

485 61890
>>61889
Из большой российской энциклопедии уже убрали эту часть, но разве математика не действительный мир изучает?
486 61891
>>61890
В математике изучают много такого, чего не может быть в действительном мире, думаю нет.
487 62012
>>61890
Конечно нет. Она изучает отношения между идеальными объектами с помощью формальной логики. Действительный мир тут ни при чем.

То, что математику применяют естественные науки в своих моделях, не означает, что математика изучает мир. Математика для них - это инструмент.
488 62017
Даже отрицательные числа бывают в действительном мире, хоть и не отрицательные величины. Вы всё равно представляете себе ту же прямую, где отмечено отрицательное направление в форме ёжика.
489 62024
>>62012

>Конечно нет.


>Она изучает отношения между идеальными объектами с помощью формальной логики.


Кек. Математика - раздел физики же. Ладно, как минимум обусловлена физической реальностью. "Идеальные объекты", ну возьмем тогда числа, они существуют только потому что ты можешь в физической реальности взять N каких то объектов - вроде N стульев или перекладывать N палочек. А что бы было если реальность состояла из аморфных блобов переливающихся друг в друга? Или абсолютно уникальных сущностей без возможности обобщения? Никаких бы чисел тогда не было.
То же и с логикой. Логика это всего лишь ментальное построение некоторого механизма который перекладывал бы логические выражения и совершал прочие логические действия. При этом "предполагается" что этот механизм действует по Ньютоновским законам. Этот пример особенно занятен потому что как известно в микромире действуют квантовые законы, и если бы люди обитали в микромире до рассуждали бы по непоколебимым законам квантовой логики.
490 62026
>>62024
Ты неправ на 100%. Можно например взять аксиоматику евклида, а можно взять аксиоматику лобачевского. Они взаимоисключющие, а значит как минимум одна точно не про этот мир. Да и все твои доводи инвалидны - то, что для представления прямой или точки или числа можно использовать аналогию реального мира не влечет за собой то, что математика мир описывает. А про физику мне вдвойне смешно слышать, как физик говорю.
491 62027
>>62026
Нет просто я мыслю на более высоком уровне и вижу как даже самые абстрактные теории обусловлены физической реальностью в которой они разрабатываются. Еще и евклидову геометрию притащил - это ничего что она вся состоит из черчения линий по линейке на бумаге. Вот если бы там какие размышления об ангелах были еще было о чем поговорить.

>Они взаимоисключющие, а значит как минимум одна точно не про этот мир.


А что на счет ОТО и КМ. Они тоже "не про этот мир" совсем тогда?

>А про физику мне вдвойне смешно слышать, как физик говорю.


Нет причин для смеха. Я тоже физик. Поебемся теперь?
image.png272 Кб, 480x320
492 62030
>>62027

>Поебемся теперь?


Давай.
На книжной полке рядом стоят две задницы:
первая и вторая. Булки каждой заднцы имеют вместе толщину 2 см, а обложка –– каждая –– 2 мм. Червь прошел(перпендикулярно булкам) от первой заднцы до последней. Какой путь он прошел?
493 62033
Попался на глаза этот тренж и пока я тут его читал, возник следующий вапрос:
>>58525

> Вычислить 9^903 нельзя.


Почему?
494 62034
>>62024
Логика всего одна.
>>62026

> можно взять аксиоматику лобачевского


путают кривое и прямое
495 62035
>>62034
прочитал, как

> пучкают


и аж сам обпучкался.
496 62036
>>62033
Так атомов во вселенной не хватит.
497 62037
>>62036
Ну хорошо. Но мы же в состоянии вычислить 10903×10903 без малейших усилий с точностью до последнего знака? Почему же число атомов может принципиально помешать вычислить 9903?
498 62038
>>62037

> Но мы же в состоянии вычислить 10903×10903 без малейших усилий с точностью до последнего знака?


Нет. Число атомов примерно 10^80. И наши вычислительные мощности ограничены им.
499 62039
>>62038
Ты, верно, тралишь. Как число атомов воспрепятствует тебе выписать число с 903 + 903 нулями после единицы?
500 62052
>>62039
А куда это число выписывать собрался? Если что, то речь идёт про десятичную запись. У тебя атомов для записи не хватит просто.
501 62054
>>62052
И что, что десятичную? Легко можно выписать хоть 903, хоть 1806 ноликов убористым почерком на одной странице твоей школьной тетради, хотя можно и не выписывать, конечно. При чём тут атомы какие-то вообще? Охуеть.
502 62055
>>62054
Речь идёт про 9^903 ноликов. Это число превышает 10^80. Выписать его десятичную запись в нашей вселенной нельзя, атомов для записи ноликов не хватит.
503 62067
>>62034

>Логика всего одна


Какая же это? Лучше скажи что ты знаешь только одну на самом деле ни одной
504 62095
>>62055
Напоминает фейнмановские срачи с математиками, забавно.
505 62097
>>62095
Я на чернильную дыру Вавилова ориентировался.
506 62111
>>62097
Чем тебе Вавилов не угодил?
507 62112
>>62111

Он вооще невменяем. Целую книжку написал где пафосно всем доказывал будто наивная теория множест Кантора не противоречива, просто все дурачки неправильно перевели с немецкого термины множест и супермножеств-классов.
508 62143
Вавилов классный. Няшкакаваймайвайфуже.
509 62153
>>62112
Но это правда. Проблема во Фреге, а не в Канторе.
510 62686
>>62153

Не согласен.
511 64270
>>62027

>Нет просто я мыслю на более высоком уровне и вижу как даже самые абстрактные теории обусловлены физической реальностью в которой они разрабатываются.



У вас физикализм головного мозга
https://ru.wikipedia.org/wiki/Физикализм
512 70227
>>62153

Схуяли это правда? По сути он "разрешает" противоречие простой наивной формулировкой но с запретом на построение "множеств всех множеств". Это хуйня полнейшая а не определение, страусиная позиция.
Обновить тред
« /math/В начало тредаВеб-версияНастройки
/a//b//mu//s//vg/Все доски

Скачать тред только с превьюс превью и прикрепленными файлами

Второй вариант может долго скачиваться. Файлы будут только в живых или недавно утонувших тредах.Подробнее