Этого треда уже нет.
Это копия, сохраненная 18 июля 2017 года.
Скачать тред: только с превью, с превью и прикрепленными файлами.
Второй вариант может долго скачиваться. Файлы будут только в живых или недавно утонувших тредах. Подробнее
Если вам полезен архив М.Двача, пожертвуйте на оплату сервера.
Это копия, сохраненная 18 июля 2017 года.
Скачать тред: только с превью, с превью и прикрепленными файлами.
Второй вариант может долго скачиваться. Файлы будут только в живых или недавно утонувших тредах. Подробнее
Если вам полезен архив М.Двача, пожертвуйте на оплату сервера.
327 Кб, 800x1067
184 Кб, 800x634
293 Кб, 800x1067
240 Кб, 800x1067
Говорите СПИННЕР примитив? А как вам спиннер с микросхемами и литий-полимерным аккумулятором??
>>157278376 (OP)
Балансировка проебана же
Балансировка проебана же
>>157278376 (OP)
Что это за хрень такая, спиннер? Почему везде форсят. На сколько я знаю, она просто крутится и все? В чем космический эффект от этого?
Что это за хрень такая, спиннер? Почему везде форсят. На сколько я знаю, она просто крутится и все? В чем космический эффект от этого?
>>157278376 (OP)
Вот когда додумаются генератор воткнуть тогда можно будет говорить хоть о какой то полезности. Покрутить спиннер для зарядки телефона охуенно я считаю. А пока вы долбоёбы с хуйнёй для аутистов.
Вот когда додумаются генератор воткнуть тогда можно будет говорить хоть о какой то полезности. Покрутить спиннер для зарядки телефона охуенно я считаю. А пока вы долбоёбы с хуйнёй для аутистов.
>>157278425
Это фингербокс который выстрелил. отличий вообще никаких.
Это фингербокс который выстрелил. отличий вообще никаких.
>>157278427
В чем проблема взять с собой генератор и крутить его? В чем разница?
В чем проблема взять с собой генератор и крутить его? В чем разница?
Ответы157278481
>>157278425
Крутить приятно по ощущениям.
Крутить приятно по ощущениям.
Ответы157289287
>>157278458
В ощущениях.
В ощущениях.
>>157278405
Ну незнаю, у меня есть пластиковый спиннер с музыкой и подсветкой, правда музыка встроенная). Крутится мягко и плавно почти 2 с половиной минуты.
Ну незнаю, у меня есть пластиковый спиннер с музыкой и подсветкой, правда музыка встроенная). Крутится мягко и плавно почти 2 с половиной минуты.
А ведь тут простор для творчества
СПИННЕР-ФЛЕШКА
СПИННЕР-ФОНАРЬ
СПИННЕР-ГЕНЕРАТОР для фонарика (Для зарядки ионистора хватит)
СПИННЕР С солнечными батареями на лопастях
спиннеры открывашки бутылок например уже есть
СПИННЕР-ФЛЕШКА
СПИННЕР-ФОНАРЬ
СПИННЕР-ГЕНЕРАТОР для фонарика (Для зарядки ионистора хватит)
СПИННЕР С солнечными батареями на лопастях
спиннеры открывашки бутылок например уже есть
>>157278531
спиннер дилдо
спиннер вилка
спиннер туалетный
спиннер моя проёбаная жизнь
https://www.youtube.com/watch?v=cQZzg8r4JgA
спиннер дилдо
спиннер вилка
спиннер туалетный
спиннер моя проёбаная жизнь
https://www.youtube.com/watch?v=cQZzg8r4JgA
>>157278427
Думаю китайцы додумаются. Несколько катушечек на неподвижной части спиннера и несколько магнитов в крутящейся. Вполне хватит чтобы заряжать аккумулятор. Хотя конечно качественый генератор будет стоить дорого, копеечный генератор будет способен разве что для зарядки ионистора фонарика
Думаю китайцы додумаются. Несколько катушечек на неподвижной части спиннера и несколько магнитов в крутящейся. Вполне хватит чтобы заряжать аккумулятор. Хотя конечно качественый генератор будет стоить дорого, копеечный генератор будет способен разве что для зарядки ионистора фонарика
Ответы157278650
>>157278606
нихуя не хватит, пиздец вы уебки-теоретики тут
нихуя не хватит, пиздец вы уебки-теоретики тут
>>157278650
Я делал генератор. Причем почти спиннер, лол. Только крутить его надо было за вал сделанный из гвоздя 200-ки. Еще три года назад. Хватало для работы радио и свечения сверхяркого диода на 1ватт.
Я делал генератор. Причем почти спиннер, лол. Только крутить его надо было за вал сделанный из гвоздя 200-ки. Еще три года назад. Хватало для работы радио и свечения сверхяркого диода на 1ватт.
Ответы157278934
>>157278650
Если его постоянно крутить то хватит. Конечно полтностью не зарядишь, но для того чтобы оживить "умирающий" телефон для одного звонка на 1-2 минуты вполне.
Если его постоянно крутить то хватит. Конечно полтностью не зарядишь, но для того чтобы оживить "умирающий" телефон для одного звонка на 1-2 минуты вполне.
>>157278681
Это что, ГЕНЕРАТОР В ТРИ БЛИНА?
Это что, ГЕНЕРАТОР В ТРИ БЛИНА?
Ответы157279064
>>157278376 (OP)
Ееееебать, вот это технологии! МИКРОСХЕМА и АККУМУЛЯТОР! Точно не фотошоп?
Ееееебать, вот это технологии! МИКРОСХЕМА и АККУМУЛЯТОР! Точно не фотошоп?
Cпиннер для самообороны предлагаю
В каждой лопасти по девайсу
Скажем шокер, газовый баллон и нож (или фонарь)
В каждой лопасти по девайсу
Скажем шокер, газовый баллон и нож (или фонарь)
>>157278405
Вряд ли, можно прекрасно сбалансированную схему расSHITать, а то что не хватило, тупо компенсировать наплывами в корпусе, сраные 0.5-0.2 мм толстоты, дадут не хилую такую прибавку в весе на луч, умножай на 2 и ты ещё и экономию на матрице получишь. Ну и плюс, 3-10 слоёв УФ-лакировки (УФ-лак почти не выделяет массовую долю и не даёт усадки, в отличии от сольвента и 2-х компонентов, он тупо твердеет под действием УФ-излучения) в нужном месте дадут 98-99% точность компенсации, всё остальное сделает физика.
>>157278699
Чувак, а это не ты лепил на радаче генератор из овер хуевой горы магнитов (то ли от CD-DVD-ROMов, то ли вообще от HDD), и ещё пытался его запустить в оверспин режиме?
Вряд ли, можно прекрасно сбалансированную схему расSHITать, а то что не хватило, тупо компенсировать наплывами в корпусе, сраные 0.5-0.2 мм толстоты, дадут не хилую такую прибавку в весе на луч, умножай на 2 и ты ещё и экономию на матрице получишь. Ну и плюс, 3-10 слоёв УФ-лакировки (УФ-лак почти не выделяет массовую долю и не даёт усадки, в отличии от сольвента и 2-х компонентов, он тупо твердеет под действием УФ-излучения) в нужном месте дадут 98-99% точность компенсации, всё остальное сделает физика.
>>157278699
Чувак, а это не ты лепил на радаче генератор из овер хуевой горы магнитов (то ли от CD-DVD-ROMов, то ли вообще от HDD), и ещё пытался его запустить в оверспин режиме?
>>157278720
обзмеился с тебя, содомит
обзмеился с тебя, содомит
ЛАЙФХАК!!!
Если подшипник стал плоохо крутится подуть его ПАРОМ от вейпа - будет как по маслу
Если подшипник стал плоохо крутится подуть его ПАРОМ от вейпа - будет как по маслу
>>157278376 (OP)
Генератор от спинера, пиздец вы ебнутые конечно, разве что анус закоротить хватит или эту вашу вейпхуйню подогреть перед продувом в жопу
Генератор от спинера, пиздец вы ебнутые конечно, разве что анус закоротить хватит или эту вашу вейпхуйню подогреть перед продувом в жопу
Ответы157279588
Я недавно от спиннера прикуривал
Там койл встроенный, крышку открываешь и он расколяется
Там койл встроенный, крышку открываешь и он расколяется
>>157279594
Двочаю менмс это батхерты апсирабт я васше крутанул спинер и слехка пролетел с розбегу канешна. спинеры вобще нармальные че вы гонити вам толька абсирадь
Двочаю менмс это батхерты апсирабт я васше крутанул спинер и слехка пролетел с розбегу канешна. спинеры вобще нармальные че вы гонити вам толька абсирадь
2ch "2k17" as is
Уже и обсуждение спиннеров. Спасибо Абу, за паблик вконтакте. Если бы я лет пять назад услышал, что на дваче 90% будет с форчана, я бы только порадовался, но эти 90% не с иностранной борды, а из "амаральнава" паблика вк, очередной админ которого уже не помнит откуда взялось название.
Уже и обсуждение спиннеров. Спасибо Абу, за паблик вконтакте. Если бы я лет пять назад услышал, что на дваче 90% будет с форчана, я бы только порадовался, но эти 90% не с иностранной борды, а из "амаральнава" паблика вк, очередной админ которого уже не помнит откуда взялось название.
>>157279594
Теперь можно долбиться в жеппу и курить одновременно
Теперь можно долбиться в жеппу и курить одновременно
>>157278376 (OP)
НИХУЯ СЕБЕ!!! ДА ТАМ ЖЕ СВЕТОДИОДЫ!!
НИХУЯ СЕБЕ!!! ДА ТАМ ЖЕ СВЕТОДИОДЫ!!
>>157278376 (OP)
Херня, лучше уж тогда хай тек с развёрткой, чтобы динамические надписи и вообще user - контент можно было заливать по блютусу.
Херня, лучше уж тогда хай тек с развёрткой, чтобы динамические надписи и вообще user - контент можно было заливать по блютусу.
177 Кб, 1066x787
>>157286499
Если мужчина работает - это ее младшая сестра
Если мужчина работает - это ее младшая сестра
Скоро спиннер придется перепрошивать, выбирать какую ос ставить, антивирусник хуярить.
>>157288685
Вон тот жирный хочет меня убить.
Вон тот жирный хочет меня убить.
>>157278425
Ты с какой деревни?
Ты с какой деревни?
Ответы157289300
>>157278476
Дрочить один хуй приятнее.
Дрочить один хуй приятнее.
Ответы157314403
>>157289186
Москва
Москва
45 Кб, 995x993
Вызывает президент министра и спрашивает:
- Вы кто?
- Вы кто?
>>157286499
ДИСК НИПКОВА
ДИСК НИПКОВА
>>157278427
Спасибо за идею. Пошел на кикстартер.
Спасибо за идею. Пошел на кикстартер.
Меня удивляет как до идее спиннера не додумались раньше
Подшипнику ведь дохуя лет
ИСТОРИЯ ПОДШИПНИКА
От древних времен до наших дней
Примитивные предшественники современного подшипника, так широко применяемого в наши дни, упрощали жизнь человека уже многие тысячи лет тому назад. Главнейшую роль в историческом процессе возникновения и постепенного совершенствования подшипника можно отдать изучению процесса трения и сопровождающих его явлений. Ведь о существовании трения человечество знало уже с древнейших времен, о чем в частности свидетельствует тот факт, что первобытный человек добывал огонь трением, быстро вращая палку, а впоследствии – высекая огонь ударом камня о камень, т.е. использовал явление перехода кинетической энергии трения в тепловую энергию.
Примитивные подшипники скольжения были найдены впервые в раскопках, относящихся к эпохе неолита, когда люди впервые овладели умением сверления отверстий в камне. Изготавливались они, понятное дело, из камня и применялись в первобытных сверлильных приспособлениях и прядильных веретенах. Позднее стали использоваться в разнообразных простейших конструкциях, таких как: колесница, арба, гончарный круг, мельничные камни. Ведь до изобретения колеса транспортировка грузов совершалась на санях, которые тянули люди или животные, естественно тоже преодолевая сопротивление силы трения скольжения.
Прежде же чем подшипник качения достиг формы, приблизительно схожей с современной, он прошел самые разнообразнейшие этапы своего совершенствования. Почти до II века до н.э. его предшественники – обыкновенные деревянные бревна (в современном понимании – ролики), кстати, еще используемые и в наши дни – применялись (с целью уменьшения все той же силы трения) исключительно при транспортировке очень тяжелых предметов: огромные каменные блоки для строительства, осадные машины и т.п. Такие методы широко использовались в древнем Египте и в Азии. Сходный способ замены трения скольжения трением качения применяли также в местности Буген (Нубия), где построили египетскую крепость, в которой разводной мост передвигали на роликах.
Переломным этапом в реализации идеи уменьшения силы трения, оказывающей сопротивление движению, было изобретение примерно за 3000 лет до н.э. колеса, которое заменило скользящее движение на качение.
И в те далекие времена для уменьшения сопротивление силы трения, поглощающего большое количество энергии и, соответственно, уменьшения нагрева подшипники подвергались смазке. Только вначале для этого использовали масла растительного происхождения. Которым, к сожалению, свойственна очень низкая вязкость и что еще более важно склонность к высыханию. Значительно лучше было применять животные жиры, которые обогащали минеральными сгустителями. Для смазки осей телеги использовали также разнородные мази, которые получали из смолы деревьев. На территориях, где были поверхностные вытекания нафты (нефть, каменное масло), мази получали путем продолжительного нагревания нафты. Результаты археологических исследований показали, что в древних гробницах были колесницы правителей с сохранившимися на осях остатками смазки. Проведенный анализ показал присутствие животного жира, смешанного с минеральными сгустителями (температура плавления около 50 ?С). Плиний Старший (23–73 гг. н.э.) представил список различных растительных масел и жиров, используемых для смазки. Такие смазочные материалы доминировали практически до времен изобретения первой паровой машины. Минеральные масла получили достаточно широкое применение, только в начале XX века.
Первая конструкция, которую можно считать действующим «прототипом» подшипника качения, была разработана греческим инженером Diades около 330 г. до н.э. Это была головка осадной вышки для разрушения крепостных стен. В этой конструкции таран находился на роликах, которые передвигались в желобках, прорезанных в основании. Ролики были схвачены общей корзиной, управляемой с помощью канатов, перекинутых через неподвижные блоки. Канаты крепились к концам корзины. Интересным является то, что в таком решении первый раз использовали не только принцип действия современных подшипников, но и ввели передачу движения через стык качения, что теперь часто используется во фрикционных бесступенчатых передачах.
Появление первых «прототипов» продольных (упорных) шариковых подшипников приписывается позднему периоду правления императора Калигулы. В судне со времен правления Калигулы и Клавдия (I в. н.э.) археологи нашли поворотные круги. Один из найденных кругов вращался, опираясь на небольшие колесики, которые крепились к окружности круга. В другом, находившимся под помостом, вместо колес использовали шарики, каждый из которых был соединен на вращающуюся цапфу с поворотным кругом. В третьем вместо колес использовали 8 деревянных валиков в форме усеченного конуса. Механизм поворотного круга состоял из двух деревянных дисков. Нижний диск имел цапфу, которая устанавливала ось для обоих дисков, а в верхнем было восемь впадин, в которых находились шарообразные элементы качения. Эти элементы имели цапфы, свободно прикрепленные к верхнему диску, которые ограничивали движение элементов вокруг одной оси. Несмотря на то, что основную нагрузку несли цапфы и они не давали чистого качения, но это самый первый известный нам случай использования элемента качения шарообразной формы. Механизмы найденных поворотных кругов являются самыми ранними примерами теперешних шариковых подшипников, а также роликовых цилиндрических и конических. Даже в столь отдаленные от наших дней времена оценили то, что в продольных (упорных) подшипниках шарообразная форма элемента качения является более выгодной, чем цилиндрическая.
С начала нашей эры и до эпохи Возрождения отсутствует какая-либо информация о развитии конструкции подшипников качения. И только уже Леонардо да Винчи во многих своих конструкциях применил опоры качения, однако до начала XVIII века их использование не выходило за пределы проекта, или единичных применений. Следовательно, его с полным на то основанием можно назвать изобретателем подшипника качения. Леонардо да Винчи создал рисунок идеальной цапфы подшипника, оригинальность которой полагалась в замене трения скольжения на значительно меньшее по величине трение качения. Эта идея нашла свое применение в конце XIX в качестве шарикоподшипника, состоящего из внутреннего и внешнего колец, между которыми размещены вращающиеся шарики.
Первый металлический подшипник качения, сохранившийся по сей день, находился в подпоре ветряка, который был построен в 1780 г. в Англии в Спровстоне. Он состоял из двух дорожек качения литых из чугуна, между которыми находилось 40 чугунных шаров. Стоит заметить, что соотношение радиуса желобка дорожки и шаров составляет 1,22 что, правда, несколько больше чем в современных подшипниках. Однако уже тогда задумывались над необходимостью уменьшения сопротивления движению, причиной которого является скольжение в зоне стыка.
В XIX веке продолжалось совершенствование конструкции подшипников качения, а также расширение их применения в машинах и механизмах. Однако лишь в последнее двадцатилетие этого века введение технологии абразивной обработки сделало возможным достижение достаточной твердости и точности элементов подшипника. Прежде чем наступил перелом, в производстве шариков использовали круглые стальные прутья, которые формировали и обрабатывали вручную. Отсутствие точности в таких действиях было причиной неравномерных нагрузок подшипников, которые постоянно деформировались. Перелом наступил благодаря 34-летнему технику и изобретателю Фридриху Фишеру, который был сыном Филиппа Морица Фишера. Фридрих Фишер сконструировал машину для шлифования стальных шариков, построил первый подшипниковый велосипед (1853 г.), изобрел первый полностью автоматический фрезерный станок, который функционировала как мельничный камень. Изобретение Фишера сделало возможным шлифование стальных закаленных шариков, которые подвергались процессу шлифования и, наконец, получили желаемую равномерную форму. Благодаря этому новшеству стальные шарики Фишера триумфально вышли на мировой рынок.
Подшипнику ведь дохуя лет
ИСТОРИЯ ПОДШИПНИКА
От древних времен до наших дней
Примитивные предшественники современного подшипника, так широко применяемого в наши дни, упрощали жизнь человека уже многие тысячи лет тому назад. Главнейшую роль в историческом процессе возникновения и постепенного совершенствования подшипника можно отдать изучению процесса трения и сопровождающих его явлений. Ведь о существовании трения человечество знало уже с древнейших времен, о чем в частности свидетельствует тот факт, что первобытный человек добывал огонь трением, быстро вращая палку, а впоследствии – высекая огонь ударом камня о камень, т.е. использовал явление перехода кинетической энергии трения в тепловую энергию.
Примитивные подшипники скольжения были найдены впервые в раскопках, относящихся к эпохе неолита, когда люди впервые овладели умением сверления отверстий в камне. Изготавливались они, понятное дело, из камня и применялись в первобытных сверлильных приспособлениях и прядильных веретенах. Позднее стали использоваться в разнообразных простейших конструкциях, таких как: колесница, арба, гончарный круг, мельничные камни. Ведь до изобретения колеса транспортировка грузов совершалась на санях, которые тянули люди или животные, естественно тоже преодолевая сопротивление силы трения скольжения.
Прежде же чем подшипник качения достиг формы, приблизительно схожей с современной, он прошел самые разнообразнейшие этапы своего совершенствования. Почти до II века до н.э. его предшественники – обыкновенные деревянные бревна (в современном понимании – ролики), кстати, еще используемые и в наши дни – применялись (с целью уменьшения все той же силы трения) исключительно при транспортировке очень тяжелых предметов: огромные каменные блоки для строительства, осадные машины и т.п. Такие методы широко использовались в древнем Египте и в Азии. Сходный способ замены трения скольжения трением качения применяли также в местности Буген (Нубия), где построили египетскую крепость, в которой разводной мост передвигали на роликах.
Переломным этапом в реализации идеи уменьшения силы трения, оказывающей сопротивление движению, было изобретение примерно за 3000 лет до н.э. колеса, которое заменило скользящее движение на качение.
И в те далекие времена для уменьшения сопротивление силы трения, поглощающего большое количество энергии и, соответственно, уменьшения нагрева подшипники подвергались смазке. Только вначале для этого использовали масла растительного происхождения. Которым, к сожалению, свойственна очень низкая вязкость и что еще более важно склонность к высыханию. Значительно лучше было применять животные жиры, которые обогащали минеральными сгустителями. Для смазки осей телеги использовали также разнородные мази, которые получали из смолы деревьев. На территориях, где были поверхностные вытекания нафты (нефть, каменное масло), мази получали путем продолжительного нагревания нафты. Результаты археологических исследований показали, что в древних гробницах были колесницы правителей с сохранившимися на осях остатками смазки. Проведенный анализ показал присутствие животного жира, смешанного с минеральными сгустителями (температура плавления около 50 ?С). Плиний Старший (23–73 гг. н.э.) представил список различных растительных масел и жиров, используемых для смазки. Такие смазочные материалы доминировали практически до времен изобретения первой паровой машины. Минеральные масла получили достаточно широкое применение, только в начале XX века.
Первая конструкция, которую можно считать действующим «прототипом» подшипника качения, была разработана греческим инженером Diades около 330 г. до н.э. Это была головка осадной вышки для разрушения крепостных стен. В этой конструкции таран находился на роликах, которые передвигались в желобках, прорезанных в основании. Ролики были схвачены общей корзиной, управляемой с помощью канатов, перекинутых через неподвижные блоки. Канаты крепились к концам корзины. Интересным является то, что в таком решении первый раз использовали не только принцип действия современных подшипников, но и ввели передачу движения через стык качения, что теперь часто используется во фрикционных бесступенчатых передачах.
Появление первых «прототипов» продольных (упорных) шариковых подшипников приписывается позднему периоду правления императора Калигулы. В судне со времен правления Калигулы и Клавдия (I в. н.э.) археологи нашли поворотные круги. Один из найденных кругов вращался, опираясь на небольшие колесики, которые крепились к окружности круга. В другом, находившимся под помостом, вместо колес использовали шарики, каждый из которых был соединен на вращающуюся цапфу с поворотным кругом. В третьем вместо колес использовали 8 деревянных валиков в форме усеченного конуса. Механизм поворотного круга состоял из двух деревянных дисков. Нижний диск имел цапфу, которая устанавливала ось для обоих дисков, а в верхнем было восемь впадин, в которых находились шарообразные элементы качения. Эти элементы имели цапфы, свободно прикрепленные к верхнему диску, которые ограничивали движение элементов вокруг одной оси. Несмотря на то, что основную нагрузку несли цапфы и они не давали чистого качения, но это самый первый известный нам случай использования элемента качения шарообразной формы. Механизмы найденных поворотных кругов являются самыми ранними примерами теперешних шариковых подшипников, а также роликовых цилиндрических и конических. Даже в столь отдаленные от наших дней времена оценили то, что в продольных (упорных) подшипниках шарообразная форма элемента качения является более выгодной, чем цилиндрическая.
С начала нашей эры и до эпохи Возрождения отсутствует какая-либо информация о развитии конструкции подшипников качения. И только уже Леонардо да Винчи во многих своих конструкциях применил опоры качения, однако до начала XVIII века их использование не выходило за пределы проекта, или единичных применений. Следовательно, его с полным на то основанием можно назвать изобретателем подшипника качения. Леонардо да Винчи создал рисунок идеальной цапфы подшипника, оригинальность которой полагалась в замене трения скольжения на значительно меньшее по величине трение качения. Эта идея нашла свое применение в конце XIX в качестве шарикоподшипника, состоящего из внутреннего и внешнего колец, между которыми размещены вращающиеся шарики.
Первый металлический подшипник качения, сохранившийся по сей день, находился в подпоре ветряка, который был построен в 1780 г. в Англии в Спровстоне. Он состоял из двух дорожек качения литых из чугуна, между которыми находилось 40 чугунных шаров. Стоит заметить, что соотношение радиуса желобка дорожки и шаров составляет 1,22 что, правда, несколько больше чем в современных подшипниках. Однако уже тогда задумывались над необходимостью уменьшения сопротивления движению, причиной которого является скольжение в зоне стыка.
В XIX веке продолжалось совершенствование конструкции подшипников качения, а также расширение их применения в машинах и механизмах. Однако лишь в последнее двадцатилетие этого века введение технологии абразивной обработки сделало возможным достижение достаточной твердости и точности элементов подшипника. Прежде чем наступил перелом, в производстве шариков использовали круглые стальные прутья, которые формировали и обрабатывали вручную. Отсутствие точности в таких действиях было причиной неравномерных нагрузок подшипников, которые постоянно деформировались. Перелом наступил благодаря 34-летнему технику и изобретателю Фридриху Фишеру, который был сыном Филиппа Морица Фишера. Фридрих Фишер сконструировал машину для шлифования стальных шариков, построил первый подшипниковый велосипед (1853 г.), изобрел первый полностью автоматический фрезерный станок, который функционировала как мельничный камень. Изобретение Фишера сделало возможным шлифование стальных закаленных шариков, которые подвергались процессу шлифования и, наконец, получили желаемую равномерную форму. Благодаря этому новшеству стальные шарики Фишера триумфально вышли на мировой рынок.
Меня удивляет как до идее спиннера не додумались раньше
Подшипнику ведь дохуя лет
ИСТОРИЯ ПОДШИПНИКА
От древних времен до наших дней
Примитивные предшественники современного подшипника, так широко применяемого в наши дни, упрощали жизнь человека уже многие тысячи лет тому назад. Главнейшую роль в историческом процессе возникновения и постепенного совершенствования подшипника можно отдать изучению процесса трения и сопровождающих его явлений. Ведь о существовании трения человечество знало уже с древнейших времен, о чем в частности свидетельствует тот факт, что первобытный человек добывал огонь трением, быстро вращая палку, а впоследствии – высекая огонь ударом камня о камень, т.е. использовал явление перехода кинетической энергии трения в тепловую энергию.
Примитивные подшипники скольжения были найдены впервые в раскопках, относящихся к эпохе неолита, когда люди впервые овладели умением сверления отверстий в камне. Изготавливались они, понятное дело, из камня и применялись в первобытных сверлильных приспособлениях и прядильных веретенах. Позднее стали использоваться в разнообразных простейших конструкциях, таких как: колесница, арба, гончарный круг, мельничные камни. Ведь до изобретения колеса транспортировка грузов совершалась на санях, которые тянули люди или животные, естественно тоже преодолевая сопротивление силы трения скольжения.
Прежде же чем подшипник качения достиг формы, приблизительно схожей с современной, он прошел самые разнообразнейшие этапы своего совершенствования. Почти до II века до н.э. его предшественники – обыкновенные деревянные бревна (в современном понимании – ролики), кстати, еще используемые и в наши дни – применялись (с целью уменьшения все той же силы трения) исключительно при транспортировке очень тяжелых предметов: огромные каменные блоки для строительства, осадные машины и т.п. Такие методы широко использовались в древнем Египте и в Азии. Сходный способ замены трения скольжения трением качения применяли также в местности Буген (Нубия), где построили египетскую крепость, в которой разводной мост передвигали на роликах.
Переломным этапом в реализации идеи уменьшения силы трения, оказывающей сопротивление движению, было изобретение примерно за 3000 лет до н.э. колеса, которое заменило скользящее движение на качение.
И в те далекие времена для уменьшения сопротивление силы трения, поглощающего большое количество энергии и, соответственно, уменьшения нагрева подшипники подвергались смазке. Только вначале для этого использовали масла растительного происхождения. Которым, к сожалению, свойственна очень низкая вязкость и что еще более важно склонность к высыханию. Значительно лучше было применять животные жиры, которые обогащали минеральными сгустителями. Для смазки осей телеги использовали также разнородные мази, которые получали из смолы деревьев. На территориях, где были поверхностные вытекания нафты (нефть, каменное масло), мази получали путем продолжительного нагревания нафты. Результаты археологических исследований показали, что в древних гробницах были колесницы правителей с сохранившимися на осях остатками смазки. Проведенный анализ показал присутствие животного жира, смешанного с минеральными сгустителями (температура плавления около 50 ?С). Плиний Старший (23–73 гг. н.э.) представил список различных растительных масел и жиров, используемых для смазки. Такие смазочные материалы доминировали практически до времен изобретения первой паровой машины. Минеральные масла получили достаточно широкое применение, только в начале XX века.
Первая конструкция, которую можно считать действующим «прототипом» подшипника качения, была разработана греческим инженером Diades около 330 г. до н.э. Это была головка осадной вышки для разрушения крепостных стен. В этой конструкции таран находился на роликах, которые передвигались в желобках, прорезанных в основании. Ролики были схвачены общей корзиной, управляемой с помощью канатов, перекинутых через неподвижные блоки. Канаты крепились к концам корзины. Интересным является то, что в таком решении первый раз использовали не только принцип действия современных подшипников, но и ввели передачу движения через стык качения, что теперь часто используется во фрикционных бесступенчатых передачах.
Появление первых «прототипов» продольных (упорных) шариковых подшипников приписывается позднему периоду правления императора Калигулы. В судне со времен правления Калигулы и Клавдия (I в. н.э.) археологи нашли поворотные круги. Один из найденных кругов вращался, опираясь на небольшие колесики, которые крепились к окружности круга. В другом, находившимся под помостом, вместо колес использовали шарики, каждый из которых был соединен на вращающуюся цапфу с поворотным кругом. В третьем вместо колес использовали 8 деревянных валиков в форме усеченного конуса. Механизм поворотного круга состоял из двух деревянных дисков. Нижний диск имел цапфу, которая устанавливала ось для обоих дисков, а в верхнем было восемь впадин, в которых находились шарообразные элементы качения. Эти элементы имели цапфы, свободно прикрепленные к верхнему диску, которые ограничивали движение элементов вокруг одной оси. Несмотря на то, что основную нагрузку несли цапфы и они не давали чистого качения, но это самый первый известный нам случай использования элемента качения шарообразной формы. Механизмы найденных поворотных кругов являются самыми ранними примерами теперешних шариковых подшипников, а также роликовых цилиндрических и конических. Даже в столь отдаленные от наших дней времена оценили то, что в продольных (упорных) подшипниках шарообразная форма элемента качения является более выгодной, чем цилиндрическая.
С начала нашей эры и до эпохи Возрождения отсутствует какая-либо информация о развитии конструкции подшипников качения. И только уже Леонардо да Винчи во многих своих конструкциях применил опоры качения, однако до начала XVIII века их использование не выходило за пределы проекта, или единичных применений. Следовательно, его с полным на то основанием можно назвать изобретателем подшипника качения. Леонардо да Винчи создал рисунок идеальной цапфы подшипника, оригинальность которой полагалась в замене трения скольжения на значительно меньшее по величине трение качения. Эта идея нашла свое применение в конце XIX в качестве шарикоподшипника, состоящего из внутреннего и внешнего колец, между которыми размещены вращающиеся шарики.
Первый металлический подшипник качения, сохранившийся по сей день, находился в подпоре ветряка, который был построен в 1780 г. в Англии в Спровстоне. Он состоял из двух дорожек качения литых из чугуна, между которыми находилось 40 чугунных шаров. Стоит заметить, что соотношение радиуса желобка дорожки и шаров составляет 1,22 что, правда, несколько больше чем в современных подшипниках. Однако уже тогда задумывались над необходимостью уменьшения сопротивления движению, причиной которого является скольжение в зоне стыка.
В XIX веке продолжалось совершенствование конструкции подшипников качения, а также расширение их применения в машинах и механизмах. Однако лишь в последнее двадцатилетие этого века введение технологии абразивной обработки сделало возможным достижение достаточной твердости и точности элементов подшипника. Прежде чем наступил перелом, в производстве шариков использовали круглые стальные прутья, которые формировали и обрабатывали вручную. Отсутствие точности в таких действиях было причиной неравномерных нагрузок подшипников, которые постоянно деформировались. Перелом наступил благодаря 34-летнему технику и изобретателю Фридриху Фишеру, который был сыном Филиппа Морица Фишера. Фридрих Фишер сконструировал машину для шлифования стальных шариков, построил первый подшипниковый велосипед (1853 г.), изобрел первый полностью автоматический фрезерный станок, который функционировала как мельничный камень. Изобретение Фишера сделало возможным шлифование стальных закаленных шариков, которые подвергались процессу шлифования и, наконец, получили желаемую равномерную форму. Благодаря этому новшеству стальные шарики Фишера триумфально вышли на мировой рынок.
Подшипнику ведь дохуя лет
ИСТОРИЯ ПОДШИПНИКА
От древних времен до наших дней
Примитивные предшественники современного подшипника, так широко применяемого в наши дни, упрощали жизнь человека уже многие тысячи лет тому назад. Главнейшую роль в историческом процессе возникновения и постепенного совершенствования подшипника можно отдать изучению процесса трения и сопровождающих его явлений. Ведь о существовании трения человечество знало уже с древнейших времен, о чем в частности свидетельствует тот факт, что первобытный человек добывал огонь трением, быстро вращая палку, а впоследствии – высекая огонь ударом камня о камень, т.е. использовал явление перехода кинетической энергии трения в тепловую энергию.
Примитивные подшипники скольжения были найдены впервые в раскопках, относящихся к эпохе неолита, когда люди впервые овладели умением сверления отверстий в камне. Изготавливались они, понятное дело, из камня и применялись в первобытных сверлильных приспособлениях и прядильных веретенах. Позднее стали использоваться в разнообразных простейших конструкциях, таких как: колесница, арба, гончарный круг, мельничные камни. Ведь до изобретения колеса транспортировка грузов совершалась на санях, которые тянули люди или животные, естественно тоже преодолевая сопротивление силы трения скольжения.
Прежде же чем подшипник качения достиг формы, приблизительно схожей с современной, он прошел самые разнообразнейшие этапы своего совершенствования. Почти до II века до н.э. его предшественники – обыкновенные деревянные бревна (в современном понимании – ролики), кстати, еще используемые и в наши дни – применялись (с целью уменьшения все той же силы трения) исключительно при транспортировке очень тяжелых предметов: огромные каменные блоки для строительства, осадные машины и т.п. Такие методы широко использовались в древнем Египте и в Азии. Сходный способ замены трения скольжения трением качения применяли также в местности Буген (Нубия), где построили египетскую крепость, в которой разводной мост передвигали на роликах.
Переломным этапом в реализации идеи уменьшения силы трения, оказывающей сопротивление движению, было изобретение примерно за 3000 лет до н.э. колеса, которое заменило скользящее движение на качение.
И в те далекие времена для уменьшения сопротивление силы трения, поглощающего большое количество энергии и, соответственно, уменьшения нагрева подшипники подвергались смазке. Только вначале для этого использовали масла растительного происхождения. Которым, к сожалению, свойственна очень низкая вязкость и что еще более важно склонность к высыханию. Значительно лучше было применять животные жиры, которые обогащали минеральными сгустителями. Для смазки осей телеги использовали также разнородные мази, которые получали из смолы деревьев. На территориях, где были поверхностные вытекания нафты (нефть, каменное масло), мази получали путем продолжительного нагревания нафты. Результаты археологических исследований показали, что в древних гробницах были колесницы правителей с сохранившимися на осях остатками смазки. Проведенный анализ показал присутствие животного жира, смешанного с минеральными сгустителями (температура плавления около 50 ?С). Плиний Старший (23–73 гг. н.э.) представил список различных растительных масел и жиров, используемых для смазки. Такие смазочные материалы доминировали практически до времен изобретения первой паровой машины. Минеральные масла получили достаточно широкое применение, только в начале XX века.
Первая конструкция, которую можно считать действующим «прототипом» подшипника качения, была разработана греческим инженером Diades около 330 г. до н.э. Это была головка осадной вышки для разрушения крепостных стен. В этой конструкции таран находился на роликах, которые передвигались в желобках, прорезанных в основании. Ролики были схвачены общей корзиной, управляемой с помощью канатов, перекинутых через неподвижные блоки. Канаты крепились к концам корзины. Интересным является то, что в таком решении первый раз использовали не только принцип действия современных подшипников, но и ввели передачу движения через стык качения, что теперь часто используется во фрикционных бесступенчатых передачах.
Появление первых «прототипов» продольных (упорных) шариковых подшипников приписывается позднему периоду правления императора Калигулы. В судне со времен правления Калигулы и Клавдия (I в. н.э.) археологи нашли поворотные круги. Один из найденных кругов вращался, опираясь на небольшие колесики, которые крепились к окружности круга. В другом, находившимся под помостом, вместо колес использовали шарики, каждый из которых был соединен на вращающуюся цапфу с поворотным кругом. В третьем вместо колес использовали 8 деревянных валиков в форме усеченного конуса. Механизм поворотного круга состоял из двух деревянных дисков. Нижний диск имел цапфу, которая устанавливала ось для обоих дисков, а в верхнем было восемь впадин, в которых находились шарообразные элементы качения. Эти элементы имели цапфы, свободно прикрепленные к верхнему диску, которые ограничивали движение элементов вокруг одной оси. Несмотря на то, что основную нагрузку несли цапфы и они не давали чистого качения, но это самый первый известный нам случай использования элемента качения шарообразной формы. Механизмы найденных поворотных кругов являются самыми ранними примерами теперешних шариковых подшипников, а также роликовых цилиндрических и конических. Даже в столь отдаленные от наших дней времена оценили то, что в продольных (упорных) подшипниках шарообразная форма элемента качения является более выгодной, чем цилиндрическая.
С начала нашей эры и до эпохи Возрождения отсутствует какая-либо информация о развитии конструкции подшипников качения. И только уже Леонардо да Винчи во многих своих конструкциях применил опоры качения, однако до начала XVIII века их использование не выходило за пределы проекта, или единичных применений. Следовательно, его с полным на то основанием можно назвать изобретателем подшипника качения. Леонардо да Винчи создал рисунок идеальной цапфы подшипника, оригинальность которой полагалась в замене трения скольжения на значительно меньшее по величине трение качения. Эта идея нашла свое применение в конце XIX в качестве шарикоподшипника, состоящего из внутреннего и внешнего колец, между которыми размещены вращающиеся шарики.
Первый металлический подшипник качения, сохранившийся по сей день, находился в подпоре ветряка, который был построен в 1780 г. в Англии в Спровстоне. Он состоял из двух дорожек качения литых из чугуна, между которыми находилось 40 чугунных шаров. Стоит заметить, что соотношение радиуса желобка дорожки и шаров составляет 1,22 что, правда, несколько больше чем в современных подшипниках. Однако уже тогда задумывались над необходимостью уменьшения сопротивления движению, причиной которого является скольжение в зоне стыка.
В XIX веке продолжалось совершенствование конструкции подшипников качения, а также расширение их применения в машинах и механизмах. Однако лишь в последнее двадцатилетие этого века введение технологии абразивной обработки сделало возможным достижение достаточной твердости и точности элементов подшипника. Прежде чем наступил перелом, в производстве шариков использовали круглые стальные прутья, которые формировали и обрабатывали вручную. Отсутствие точности в таких действиях было причиной неравномерных нагрузок подшипников, которые постоянно деформировались. Перелом наступил благодаря 34-летнему технику и изобретателю Фридриху Фишеру, который был сыном Филиппа Морица Фишера. Фридрих Фишер сконструировал машину для шлифования стальных шариков, построил первый подшипниковый велосипед (1853 г.), изобрел первый полностью автоматический фрезерный станок, который функционировала как мельничный камень. Изобретение Фишера сделало возможным шлифование стальных закаленных шариков, которые подвергались процессу шлифования и, наконец, получили желаемую равномерную форму. Благодаря этому новшеству стальные шарики Фишера триумфально вышли на мировой рынок.
Однако шариковые подшипники подходили не для всех инженерных решений. В 1907 г. молодой шведский инженер Свен Вингквист нарисовал эскиз первого в мире качающегося подшипника. После Первой Мировой войны начался процесс повсеместного вытеснения подшипников скольжения подшипниками качения. Этому способствовало появление около 1920 г. роликовых подшипников, которые могли переносить значительно большие нагрузки. Вскоре появились и новые их разновидности: игольчатые подшипники, а позднее и конические подшипники.
Большую роль в совершенствовании подшипников скольжения сыграли О. Рейнолдс и Н.П. Петров. Независимо друг от друга они исследовали так называемый гидродинамический эффект. Суть этого эффекта заключалась в том, что при достаточной частоте вращения вала в масле автоматически вырабатывается давление, которое поддерживает вал как бы в невесомости без необходимости его соприкосновения с металлом подшипника. Изучение этого эффекта сделало возможным конструирование подшипников скольжения с очень малым трением. Позднее, для тихоходных машин или машин, имеющих тяжелый ротор, ввели гидростатические подшипники скольжения, где масло под давлением подается снаружи.
Около 1945 г. благодаря использованию металлокерамики появились безмаслянные подшипники скольжения. Они состояли из пористого металла насыщенного смазкой или со сплава бронзы и графита, которые в небольших машинах могут хорошо работать долгое время. В быстроходных центрифугах и гироскопах смаром является воздух (пневматический подшипник). Следующим новшеством, которое нашло широкое применение, являются гибридные подшипники. Обычно, увеличение прочности быстроходных подшипников происходит в результате применения желобчатых шариков или шариков с небольшой массой. Альтернативой для такого типа решений является соединение шарикоподшипника с гидростатическим подшипником. Реальное разделение нагрузки между шарикоподшипником и гидростатическим подшипником составляет 50%, что может дать десятикратное увеличение прочности такого подшипника по сравнению с обычным шариковым подшипником, работающим в тех же условиях. В предложенном решении внешняя дорожка шарикоподшипника находится в стационарном корпусе, а внутренняя дорожка смонтирована на промежуточной втулке, которая может свободно вращаться относительно вала.
В самом процессе производства подшипников появляется много новшеств, дающих возможность создания более точных, быстрых и недорогих решений. Одним из них стала технология уменьшения вращающегося момента, примером которой может быть разработанный железнодорожный подшипник с низким моментом вращения. Оказалось, что такое решение позволяет экономить большое количество топлива. Однако наиболее важным переломным моментом в проектировании подшипниковых узлов стала компьютерная техника, позволяющая анализировать подшипниковый узел практически во всех отношениях. Созданные с помощью компьютерной техники виртуальные подшипники могут быть тщательно проверены без необходимости приведения в действие целого технологического процесса. Современные компьютерные программы позволяют ввести для виртуальных подшипников и подшипниковых узлов любые параметры – как внешние, так и внутренние. Таким методом был спроектирован микроподшипник для микроэлектроники, используемый в жестких дисках.
Почти до конца XX века обычным материалом для подшипников была сталь, которая проходила очередные модификации, в зависимости от требований. Однако сталь навязывала конструкторам определенные рамки применения своими основными свойствами. К главным характеристикам надо отнести тепловую расширяемость, большую плотность, склонность к коррозии, электрическую и магнетическую проводимость и относительно большой коэффициент трения, даже при тщательной завершающей обработке. Материалом, который дал новые возможности, оказался нитрид кремния, один из керамических синтетиков. Поначалу из керамического материала изготавливали только элементы качения. Идеальным примером этого могут служить гибридные быстроходные наклонные шарикоподшипники. Однако уже через несколько лет конструкторы начали разработку подшипников, составляющие элементы которых изготовлены из керамических материалов (керамические подшипники), пример – однорядные быстроходные цилиндрические подшипники. Для сравнения, упомянутый керамический цилиндрический подшипник развивает почти 2-кратно большую скорость вращения, чем его стальной аналог.
Большую роль в совершенствовании подшипников скольжения сыграли О. Рейнолдс и Н.П. Петров. Независимо друг от друга они исследовали так называемый гидродинамический эффект. Суть этого эффекта заключалась в том, что при достаточной частоте вращения вала в масле автоматически вырабатывается давление, которое поддерживает вал как бы в невесомости без необходимости его соприкосновения с металлом подшипника. Изучение этого эффекта сделало возможным конструирование подшипников скольжения с очень малым трением. Позднее, для тихоходных машин или машин, имеющих тяжелый ротор, ввели гидростатические подшипники скольжения, где масло под давлением подается снаружи.
Около 1945 г. благодаря использованию металлокерамики появились безмаслянные подшипники скольжения. Они состояли из пористого металла насыщенного смазкой или со сплава бронзы и графита, которые в небольших машинах могут хорошо работать долгое время. В быстроходных центрифугах и гироскопах смаром является воздух (пневматический подшипник). Следующим новшеством, которое нашло широкое применение, являются гибридные подшипники. Обычно, увеличение прочности быстроходных подшипников происходит в результате применения желобчатых шариков или шариков с небольшой массой. Альтернативой для такого типа решений является соединение шарикоподшипника с гидростатическим подшипником. Реальное разделение нагрузки между шарикоподшипником и гидростатическим подшипником составляет 50%, что может дать десятикратное увеличение прочности такого подшипника по сравнению с обычным шариковым подшипником, работающим в тех же условиях. В предложенном решении внешняя дорожка шарикоподшипника находится в стационарном корпусе, а внутренняя дорожка смонтирована на промежуточной втулке, которая может свободно вращаться относительно вала.
В самом процессе производства подшипников появляется много новшеств, дающих возможность создания более точных, быстрых и недорогих решений. Одним из них стала технология уменьшения вращающегося момента, примером которой может быть разработанный железнодорожный подшипник с низким моментом вращения. Оказалось, что такое решение позволяет экономить большое количество топлива. Однако наиболее важным переломным моментом в проектировании подшипниковых узлов стала компьютерная техника, позволяющая анализировать подшипниковый узел практически во всех отношениях. Созданные с помощью компьютерной техники виртуальные подшипники могут быть тщательно проверены без необходимости приведения в действие целого технологического процесса. Современные компьютерные программы позволяют ввести для виртуальных подшипников и подшипниковых узлов любые параметры – как внешние, так и внутренние. Таким методом был спроектирован микроподшипник для микроэлектроники, используемый в жестких дисках.
Почти до конца XX века обычным материалом для подшипников была сталь, которая проходила очередные модификации, в зависимости от требований. Однако сталь навязывала конструкторам определенные рамки применения своими основными свойствами. К главным характеристикам надо отнести тепловую расширяемость, большую плотность, склонность к коррозии, электрическую и магнетическую проводимость и относительно большой коэффициент трения, даже при тщательной завершающей обработке. Материалом, который дал новые возможности, оказался нитрид кремния, один из керамических синтетиков. Поначалу из керамического материала изготавливали только элементы качения. Идеальным примером этого могут служить гибридные быстроходные наклонные шарикоподшипники. Однако уже через несколько лет конструкторы начали разработку подшипников, составляющие элементы которых изготовлены из керамических материалов (керамические подшипники), пример – однорядные быстроходные цилиндрические подшипники. Для сравнения, упомянутый керамический цилиндрический подшипник развивает почти 2-кратно большую скорость вращения, чем его стальной аналог.
Однако шариковые подшипники подходили не для всех инженерных решений. В 1907 г. молодой шведский инженер Свен Вингквист нарисовал эскиз первого в мире качающегося подшипника. После Первой Мировой войны начался процесс повсеместного вытеснения подшипников скольжения подшипниками качения. Этому способствовало появление около 1920 г. роликовых подшипников, которые могли переносить значительно большие нагрузки. Вскоре появились и новые их разновидности: игольчатые подшипники, а позднее и конические подшипники.
Большую роль в совершенствовании подшипников скольжения сыграли О. Рейнолдс и Н.П. Петров. Независимо друг от друга они исследовали так называемый гидродинамический эффект. Суть этого эффекта заключалась в том, что при достаточной частоте вращения вала в масле автоматически вырабатывается давление, которое поддерживает вал как бы в невесомости без необходимости его соприкосновения с металлом подшипника. Изучение этого эффекта сделало возможным конструирование подшипников скольжения с очень малым трением. Позднее, для тихоходных машин или машин, имеющих тяжелый ротор, ввели гидростатические подшипники скольжения, где масло под давлением подается снаружи.
Около 1945 г. благодаря использованию металлокерамики появились безмаслянные подшипники скольжения. Они состояли из пористого металла насыщенного смазкой или со сплава бронзы и графита, которые в небольших машинах могут хорошо работать долгое время. В быстроходных центрифугах и гироскопах смаром является воздух (пневматический подшипник). Следующим новшеством, которое нашло широкое применение, являются гибридные подшипники. Обычно, увеличение прочности быстроходных подшипников происходит в результате применения желобчатых шариков или шариков с небольшой массой. Альтернативой для такого типа решений является соединение шарикоподшипника с гидростатическим подшипником. Реальное разделение нагрузки между шарикоподшипником и гидростатическим подшипником составляет 50%, что может дать десятикратное увеличение прочности такого подшипника по сравнению с обычным шариковым подшипником, работающим в тех же условиях. В предложенном решении внешняя дорожка шарикоподшипника находится в стационарном корпусе, а внутренняя дорожка смонтирована на промежуточной втулке, которая может свободно вращаться относительно вала.
В самом процессе производства подшипников появляется много новшеств, дающих возможность создания более точных, быстрых и недорогих решений. Одним из них стала технология уменьшения вращающегося момента, примером которой может быть разработанный железнодорожный подшипник с низким моментом вращения. Оказалось, что такое решение позволяет экономить большое количество топлива. Однако наиболее важным переломным моментом в проектировании подшипниковых узлов стала компьютерная техника, позволяющая анализировать подшипниковый узел практически во всех отношениях. Созданные с помощью компьютерной техники виртуальные подшипники могут быть тщательно проверены без необходимости приведения в действие целого технологического процесса. Современные компьютерные программы позволяют ввести для виртуальных подшипников и подшипниковых узлов любые параметры – как внешние, так и внутренние. Таким методом был спроектирован микроподшипник для микроэлектроники, используемый в жестких дисках.
Почти до конца XX века обычным материалом для подшипников была сталь, которая проходила очередные модификации, в зависимости от требований. Однако сталь навязывала конструкторам определенные рамки применения своими основными свойствами. К главным характеристикам надо отнести тепловую расширяемость, большую плотность, склонность к коррозии, электрическую и магнетическую проводимость и относительно большой коэффициент трения, даже при тщательной завершающей обработке. Материалом, который дал новые возможности, оказался нитрид кремния, один из керамических синтетиков. Поначалу из керамического материала изготавливали только элементы качения. Идеальным примером этого могут служить гибридные быстроходные наклонные шарикоподшипники. Однако уже через несколько лет конструкторы начали разработку подшипников, составляющие элементы которых изготовлены из керамических материалов (керамические подшипники), пример – однорядные быстроходные цилиндрические подшипники. Для сравнения, упомянутый керамический цилиндрический подшипник развивает почти 2-кратно большую скорость вращения, чем его стальной аналог.
Большую роль в совершенствовании подшипников скольжения сыграли О. Рейнолдс и Н.П. Петров. Независимо друг от друга они исследовали так называемый гидродинамический эффект. Суть этого эффекта заключалась в том, что при достаточной частоте вращения вала в масле автоматически вырабатывается давление, которое поддерживает вал как бы в невесомости без необходимости его соприкосновения с металлом подшипника. Изучение этого эффекта сделало возможным конструирование подшипников скольжения с очень малым трением. Позднее, для тихоходных машин или машин, имеющих тяжелый ротор, ввели гидростатические подшипники скольжения, где масло под давлением подается снаружи.
Около 1945 г. благодаря использованию металлокерамики появились безмаслянные подшипники скольжения. Они состояли из пористого металла насыщенного смазкой или со сплава бронзы и графита, которые в небольших машинах могут хорошо работать долгое время. В быстроходных центрифугах и гироскопах смаром является воздух (пневматический подшипник). Следующим новшеством, которое нашло широкое применение, являются гибридные подшипники. Обычно, увеличение прочности быстроходных подшипников происходит в результате применения желобчатых шариков или шариков с небольшой массой. Альтернативой для такого типа решений является соединение шарикоподшипника с гидростатическим подшипником. Реальное разделение нагрузки между шарикоподшипником и гидростатическим подшипником составляет 50%, что может дать десятикратное увеличение прочности такого подшипника по сравнению с обычным шариковым подшипником, работающим в тех же условиях. В предложенном решении внешняя дорожка шарикоподшипника находится в стационарном корпусе, а внутренняя дорожка смонтирована на промежуточной втулке, которая может свободно вращаться относительно вала.
В самом процессе производства подшипников появляется много новшеств, дающих возможность создания более точных, быстрых и недорогих решений. Одним из них стала технология уменьшения вращающегося момента, примером которой может быть разработанный железнодорожный подшипник с низким моментом вращения. Оказалось, что такое решение позволяет экономить большое количество топлива. Однако наиболее важным переломным моментом в проектировании подшипниковых узлов стала компьютерная техника, позволяющая анализировать подшипниковый узел практически во всех отношениях. Созданные с помощью компьютерной техники виртуальные подшипники могут быть тщательно проверены без необходимости приведения в действие целого технологического процесса. Современные компьютерные программы позволяют ввести для виртуальных подшипников и подшипниковых узлов любые параметры – как внешние, так и внутренние. Таким методом был спроектирован микроподшипник для микроэлектроники, используемый в жестких дисках.
Почти до конца XX века обычным материалом для подшипников была сталь, которая проходила очередные модификации, в зависимости от требований. Однако сталь навязывала конструкторам определенные рамки применения своими основными свойствами. К главным характеристикам надо отнести тепловую расширяемость, большую плотность, склонность к коррозии, электрическую и магнетическую проводимость и относительно большой коэффициент трения, даже при тщательной завершающей обработке. Материалом, который дал новые возможности, оказался нитрид кремния, один из керамических синтетиков. Поначалу из керамического материала изготавливали только элементы качения. Идеальным примером этого могут служить гибридные быстроходные наклонные шарикоподшипники. Однако уже через несколько лет конструкторы начали разработку подшипников, составляющие элементы которых изготовлены из керамических материалов (керамические подшипники), пример – однорядные быстроходные цилиндрические подшипники. Для сравнения, упомянутый керамический цилиндрический подшипник развивает почти 2-кратно большую скорость вращения, чем его стальной аналог.
Когда ж у вас каникулы закончатся, ебучие спиннеры.
Ответы157314320
>>157289287
А два хуя - ещё приятнее.
А два хуя - ещё приятнее.
Кстати спиннером удобно засекать время для перекура. Запустил спиннер и стой - пари вейп пока крутится
Он как раз крутится где-то 160-200секунд
Он как раз крутится где-то 160-200секунд
Ответы157314670
Кстати спиннер вполне может заменить песочные часы (скажем применяются такие
В настоящее время песочные часы используются при проведении некоторых врачебных процедур, в фотографии, а также в качестве сувениров.
Только откалибровать надо его тщательно
В настоящее время песочные часы используются при проведении некоторых врачебных процедур, в фотографии, а также в качестве сувениров.
Только откалибровать надо его тщательно
>>157314573
Скажи, что тралишь.
Скажи, что тралишь.
Я запускаю спиннер и успеваю выебать тянку пока крутится спиннер
>>157314678
А в чем прикол всяких тянских украшений и бижутерии? Тоже ведь смысла нет
А в чем прикол всяких тянских украшений и бижутерии? Тоже ведь смысла нет
Посоны, а есть спиннер считающий число оборотов, среднюю скорость и тд, передающий все эти показатели по BT на мобас, охуенно же!
>>157314678
Порвался и потом взорвался.
Порвался и потом взорвался.
Забавно крутить спиннер в помещении с энергосберегайкой дешевой (пульсации сильные)
Кажется что лопасти крутятся в обратную сторону, потом останавливаются, опять крутятся и тд
Кажется что лопасти крутятся в обратную сторону, потом останавливаются, опять крутятся и тд
122 Кб, 1366x768
>>157278376 (OP)
Очень круто, товарищ майор.
>А как вам спиннер с микросхемами и литий-полимерным аккумулятором??
Очень круто, товарищ майор.
БАМП
>>157279095
Хули он пыльники не снял?
Хули он пыльники не снял?
Ответы157326640
>>157314403
А дрочить два хуя - еще приятнее
А дрочить два хуя - еще приятнее
>>157278376 (OP)
хуита китайская
хуита китайская
>>157278376 (OP)
хуита какляцкая!
хуита какляцкая!
Притащил говно с Али и рад.
>>157314403
Во рту и в жопе, лул
Во рту и в жопе, лул
>>157278376 (OP)
Прорывные технологии в 2017-году.
>А как вам спиннер с микросхемами и литий-полимерным аккумулятором??
Прорывные технологии в 2017-году.
Тред утонул или удален.
Это копия, сохраненная 18 июля 2017 года.
Скачать тред: только с превью, с превью и прикрепленными файлами.
Второй вариант может долго скачиваться. Файлы будут только в живых или недавно утонувших тредах. Подробнее
Если вам полезен архив М.Двача, пожертвуйте на оплату сервера.
Это копия, сохраненная 18 июля 2017 года.
Скачать тред: только с превью, с превью и прикрепленными файлами.
Второй вариант может долго скачиваться. Файлы будут только в живых или недавно утонувших тредах. Подробнее
Если вам полезен архив М.Двача, пожертвуйте на оплату сервера.